second
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +349 -2
- assets/faq/ddb1.png +0 -0
- assets/fragFiguresSingle/C001.png +0 -0
- assets/fragFiguresSingle/C002.png +0 -0
- assets/fragFiguresSingle/C003.png +0 -0
- assets/fragFiguresSingle/C004.png +0 -0
- assets/fragFiguresSingle/C006.png +0 -0
- assets/fragFiguresSingle/C007.png +0 -0
- assets/fragFiguresSingle/C008.png +0 -0
- assets/fragFiguresSingle/C009.png +0 -0
- assets/fragFiguresSingle/C010.png +0 -0
- assets/fragFiguresSingle/C011.png +0 -0
- assets/fragFiguresSingle/C012.png +0 -0
- assets/fragFiguresSingle/C013.png +0 -0
- assets/fragFiguresSingle/C014.png +0 -0
- assets/fragFiguresSingle/C015.png +0 -0
- assets/fragFiguresSingle/C017.png +0 -0
- assets/fragFiguresSingle/C018.png +0 -0
- assets/fragFiguresSingle/C020.png +0 -0
- assets/fragFiguresSingle/C021.png +0 -0
- assets/fragFiguresSingle/C022.png +0 -0
- assets/fragFiguresSingle/C023.png +0 -0
- assets/fragFiguresSingle/C024.png +0 -0
- assets/fragFiguresSingle/C025.png +0 -0
- assets/fragFiguresSingle/C026.png +0 -0
- assets/fragFiguresSingle/C027-Dipyri.png +0 -0
- assets/fragFiguresSingle/C027-E1.png +0 -0
- assets/fragFiguresSingle/C027-E2.png +0 -0
- assets/fragFiguresSingle/C027-E3.png +0 -0
- assets/fragFiguresSingle/C027-E4.png +0 -0
- assets/fragFiguresSingle/C027-E5.png +0 -0
- assets/fragFiguresSingle/C027-E7.png +0 -0
- assets/fragFiguresSingle/C027-E8.png +0 -0
- assets/fragFiguresSingle/C027-E9.png +0 -0
- assets/fragFiguresSingle/C027-N.png +0 -0
- assets/fragFiguresSingle/C027-NBMPR.png +0 -0
- assets/fragFiguresSingle/C027.png +0 -0
- assets/fragFiguresSingle/C028-E2.png +0 -0
- assets/fragFiguresSingle/C028-E3.png +0 -0
- assets/fragFiguresSingle/C028-E4.png +0 -0
- assets/fragFiguresSingle/C028-E5.png +0 -0
- assets/fragFiguresSingle/C028-E6.png +0 -0
- assets/fragFiguresSingle/C028-E7.png +0 -0
- assets/fragFiguresSingle/C028.png +0 -0
- assets/fragFiguresSingle/C029.png +0 -0
- assets/fragFiguresSingle/C030.png +0 -0
- assets/fragFiguresSingle/C031.png +0 -0
- assets/fragFiguresSingle/C032.png +0 -0
- assets/fragFiguresSingle/C033.png +0 -0
- assets/fragFiguresSingle/C034.png +0 -0
app.py
CHANGED
|
@@ -1,5 +1,352 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# streamlit_app.py
|
| 2 |
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
pd.options.mode.chained_assignment = None # default='warn'
|
| 5 |
+
import numpy as np
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
|
| 10 |
+
# relative imports
|
| 11 |
+
ROOT = os.path.abspath(os.path.dirname(__file__))
|
| 12 |
+
sys.path.append(os.path.join(ROOT, "./src/"))
|
| 13 |
+
from agstyler import PINLEFT, PRECISION_TWO, draw_grid
|
| 14 |
|
| 15 |
+
st.set_page_config(
|
| 16 |
+
page_title="Fragment-Protein interactions in Chemical Proteomics Screening",
|
| 17 |
+
page_icon=":home:",
|
| 18 |
+
layout="wide", # "centered",
|
| 19 |
+
initial_sidebar_state="expanded"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
st.markdown("""
|
| 23 |
+
<style>
|
| 24 |
+
.css-13sdm1b.e16nr0p33 {
|
| 25 |
+
margin-top: -75px;
|
| 26 |
+
}
|
| 27 |
+
</style>
|
| 28 |
+
""", unsafe_allow_html=True)
|
| 29 |
+
|
| 30 |
+
hide_streamlit_style = """
|
| 31 |
+
<style>
|
| 32 |
+
#MainMenu {visibility: hidden;}
|
| 33 |
+
footer {visibility: hidden;}
|
| 34 |
+
#header {visibility: hidden;}
|
| 35 |
+
</style>
|
| 36 |
+
"""
|
| 37 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
| 38 |
+
|
| 39 |
+
pIdDf = pd.read_csv(os.path.join(ROOT, "../data/general/proteinNames4.tsv"), sep="\t")
|
| 40 |
+
|
| 41 |
+
pId = pIdDf['UniProtID'].values
|
| 42 |
+
pIdDes = pIdDf['Description'].values
|
| 43 |
+
|
| 44 |
+
def applyFilters(df, pFil, pAdjFil, hitFil):
|
| 45 |
+
if pFil != 'no filter':
|
| 46 |
+
if pFil == '< 0.05':
|
| 47 |
+
df = df[df['ml10p'] > 1.30103]
|
| 48 |
+
else:
|
| 49 |
+
df = df[df['ml10p'] > 2]
|
| 50 |
+
|
| 51 |
+
if pAdjFil != 'no filter':
|
| 52 |
+
if pAdjFil == '< 0.05':
|
| 53 |
+
df = df[df['ml10adjP'] > 1.30103]
|
| 54 |
+
elif pAdjFil == '< 0.1':
|
| 55 |
+
df = df[df['ml10adjP'] > 1]
|
| 56 |
+
else:
|
| 57 |
+
df = df[df['ml10adjP'] > 0.60206]
|
| 58 |
+
|
| 59 |
+
if hitFil != 'no filter':
|
| 60 |
+
if hitFil == 'Low':
|
| 61 |
+
df = df[df['mdfClass'] >= 1]
|
| 62 |
+
elif hitFil == 'Medium (hits)':
|
| 63 |
+
df = df[df['mdfClass'] >= 2]
|
| 64 |
+
elif hitFil == 'Low (hits)':
|
| 65 |
+
df = df[df['mdfClass'] >= 1]
|
| 66 |
+
else:
|
| 67 |
+
df = df[df['mdfClass'] == 3]
|
| 68 |
+
|
| 69 |
+
return df
|
| 70 |
+
|
| 71 |
+
def getVarText(df):
|
| 72 |
+
if (len(df.index)) > 0:
|
| 73 |
+
bestProt = df["geneName"].values[0]
|
| 74 |
+
numProtHitss = len(df.index)
|
| 75 |
+
df.index = np.arange(1,len(df)+1)
|
| 76 |
+
protList = df.index[df["accession"]==myPid].tolist()
|
| 77 |
+
if len(protList) > 0:
|
| 78 |
+
protRank = protList[0]
|
| 79 |
+
varText1 = "hit rank is"
|
| 80 |
+
varText2 = "is best"
|
| 81 |
+
else:
|
| 82 |
+
varText1 = "is not a hit"
|
| 83 |
+
protRank = ""
|
| 84 |
+
varText2 = "protein is best"
|
| 85 |
+
del protList
|
| 86 |
+
else:
|
| 87 |
+
bestProt = "No "
|
| 88 |
+
numProtHitss = 0
|
| 89 |
+
varText1 = "is not a hit"
|
| 90 |
+
protRank = ""
|
| 91 |
+
varText2 = ""
|
| 92 |
+
return [bestProt, numProtHitss, protRank, varText1, varText2]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
st.sidebar.title("Fragment-Protein Interactions")
|
| 96 |
+
st.title("Chemical Proteomics Screening")
|
| 97 |
+
|
| 98 |
+
help_input3='''
|
| 99 |
+
|
| 100 |
+
use **:blue[UniProt Accession]**, Short Gene Name(s) or Protein Description to search\n
|
| 101 |
+
**Tip**:\n
|
| 102 |
+
To change selected protein, **:red[NO]** need to select whole existing term, delete and type new.\n
|
| 103 |
+
:blue[Just start to type new protein, old text will be automatically cleared]'''
|
| 104 |
+
|
| 105 |
+
pIdIndex = st.sidebar.selectbox(label = "Select Protein", help = help_input3, options = range(len(pIdDes)), format_func= lambda x: pIdDes[x], index= 1706)
|
| 106 |
+
|
| 107 |
+
myPid = pId[pIdIndex]
|
| 108 |
+
|
| 109 |
+
intDfOri = pd.read_csv(os.path.join(ROOT, "../data/general/finalScreen.tsv"), sep="\t")
|
| 110 |
+
fpDf = pd.read_csv(os.path.join(ROOT, "../data/general/finalFp.tsv"), sep="\t")
|
| 111 |
+
intDf = intDfOri[intDfOri["accession"]==myPid]
|
| 112 |
+
|
| 113 |
+
if len(intDf) == 0:
|
| 114 |
+
st.sidebar.write("We did **:red[not]** detect selected protein interacting with any fragment in our screen, try another protein")
|
| 115 |
+
else:
|
| 116 |
+
selectedGeneName = intDf["geneName"].values[0]
|
| 117 |
+
tempDf = applyFilters(intDf, '< 0.05', '< 0.25', 'Medium (hits)')
|
| 118 |
+
if (len(tempDf.index)) > 0:
|
| 119 |
+
tempDf = tempDf.sort_values(by=['protHits', 'l2fc'], ascending=[True, False])
|
| 120 |
+
bestFrag = tempDf["fragId"].values[0]
|
| 121 |
+
top5Frags = tempDf["fragId"].values[0:5]
|
| 122 |
+
numLigaHits = len(tempDf.index) # numLigaHits is already present in base input table
|
| 123 |
+
varText3 = "is best"
|
| 124 |
+
else:
|
| 125 |
+
bestFrag = "No"
|
| 126 |
+
varText3 = ""
|
| 127 |
+
numLigaHits = 0
|
| 128 |
+
|
| 129 |
+
######## Screening Protein Centric View ############
|
| 130 |
+
|
| 131 |
+
st.write("**Selected Protein**: ", pIdDes[pIdIndex])
|
| 132 |
+
st.markdown("""---""")
|
| 133 |
+
|
| 134 |
+
st.subheader(f"First generation fragments (Gen1) that enrich **:blue[{selectedGeneName}]** over background")
|
| 135 |
+
|
| 136 |
+
numInt = len(intDf.index)
|
| 137 |
+
st.write(f"**:blue[{numInt}]** (out of 407 screened) Gen1 fragments enrich **{selectedGeneName}**. **:blue[{numLigaHits}]**/{numInt} fragments are labelled as **hits** by applying **medium** filter Set **(:blue[fS])**. **:blue[{bestFrag}]** {varText3} **hit**.")
|
| 138 |
+
|
| 139 |
+
if (numLigaHits/407)>0.1:
|
| 140 |
+
hitRatio = np.round((numLigaHits/407)*100, 1)
|
| 141 |
+
st.write(f"**:blue[{selectedGeneName}]** is a **:red[promiscuous]** protein (**hit**/enriched ratio is **:red[{hitRatio}]**%).")
|
| 142 |
+
|
| 143 |
+
col1, col2, col3, colX, colY, colZ = st.columns(6)
|
| 144 |
+
with col1:
|
| 145 |
+
pFilter = st.selectbox(label = "*P* Value", help = "Select threshold for signifiance", options = ('< 0.05', 'no filter', '< 0.01'))
|
| 146 |
+
with col2:
|
| 147 |
+
pAdjFilter = st.selectbox(label = "adjusted *P* Value", help = "Select threshold for signifiance", options = ('< 0.25', '< 0.1', 'no filter', '< 0.05'))
|
| 148 |
+
with col3:
|
| 149 |
+
help_input='''
|
| 150 |
+
|
| 151 |
+
**:blue[0]**. no filter\n
|
| 152 |
+
**:blue[1]**. Low Confidence: Fc > 1, Median > 1, p < 0.05, adj.p < 0.25, Rank < 500\n
|
| 153 |
+
**:blue[2]**. Medium confidence ('**:blue[hits]**'): Fc > 2.3, Median > 1, p < 0.05, adj.p < 0.25, Rank < 500\n
|
| 154 |
+
**:blue[3]**. High Confidence (also '**:blue[hits]**'): Fc > 2.3, Median > 2.3, p < 0.01, adj.p < 0.1, Rank < 500'''
|
| 155 |
+
mdfClass = st.selectbox(label = "filter Set (**:blue[fS]**)", help = help_input, options = ('Medium (hits)', 'no filter', 'Low', 'High (hits)'))
|
| 156 |
+
|
| 157 |
+
if len(tempDf.index) == 0:
|
| 158 |
+
st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
|
| 159 |
+
intDf = applyFilters(intDf, 'no filter', 'no filter', 'no filter')
|
| 160 |
+
|
| 161 |
+
else:
|
| 162 |
+
intDf = applyFilters(intDf, pFilter, pAdjFilter, mdfClass)
|
| 163 |
+
|
| 164 |
+
del tempDf
|
| 165 |
+
|
| 166 |
+
intDf = intDf.sort_values(by=['protHits', 'l2fc'], ascending=[True, False])
|
| 167 |
+
|
| 168 |
+
col4, col5 = st.columns(2)
|
| 169 |
+
with col4:
|
| 170 |
+
formatter = {
|
| 171 |
+
'fragId': ('Fragment', {**PINLEFT, 'width': 10}),
|
| 172 |
+
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 15}),
|
| 173 |
+
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 25}),
|
| 174 |
+
'protHits': ('# Protein Hits', {'width': 15}),
|
| 175 |
+
'mdfClass': ('fS', {'width': 10})
|
| 176 |
+
}
|
| 177 |
+
data = draw_grid(intDf, formatter=formatter, fit_columns=True, selection='none', max_height=340)
|
| 178 |
+
with col5:
|
| 179 |
+
st.image(os.path.join(ROOT, "../assets/proteinCentric/") + myPid + ".png")
|
| 180 |
+
|
| 181 |
+
fragId = st.sidebar.selectbox(label = "Select Gen1 Fragment", options = intDf["fragId"])
|
| 182 |
+
intDf2 = intDfOri[intDfOri["fragId"]==fragId]
|
| 183 |
+
|
| 184 |
+
############ Screening Fragment Centric ###############################
|
| 185 |
+
|
| 186 |
+
st.subheader(f"Proteins enriched by **:blue[{fragId}]**")
|
| 187 |
+
|
| 188 |
+
tempDf2 = intDfOri[intDfOri["fragId"]==fragId]
|
| 189 |
+
numProtDetected = len(tempDf2.index)
|
| 190 |
+
tempDf2 = applyFilters(tempDf2, '< 0.05', '< 0.25', 'Medium (hits)')
|
| 191 |
+
|
| 192 |
+
tempDf2 = tempDf2.sort_values(by=['ligHits', 'l2fc'], ascending=[True, False])
|
| 193 |
+
[bestProt, numProtHits, protRank, varText, varText2] = getVarText(tempDf2)
|
| 194 |
+
|
| 195 |
+
if len(tempDf2.index) == 0:
|
| 196 |
+
intDf3 = applyFilters(intDf2, 'no filter', 'no filter', 'no filter')
|
| 197 |
+
|
| 198 |
+
else:
|
| 199 |
+
intDf3 = applyFilters(intDf2, pFilter, pAdjFilter, mdfClass)
|
| 200 |
+
|
| 201 |
+
intDf3 = intDf3.sort_values(by=['ligHits', 'l2fc'], ascending=[True, False])
|
| 202 |
+
|
| 203 |
+
st.sidebar.image(os.path.join(ROOT, "../assets/fragFiguresSingle/") + fragId + ".png")
|
| 204 |
+
|
| 205 |
+
st.write(f"**:blue[{numProtDetected}]** proteins were enriched by fragment **{fragId}** (Fc compared to **CRF** control). **:blue[{numProtHits}]** of those proteins were labelled as **hits** by applying **medium** filter Set **(:blue[fS])**. **:blue[{bestProt}]** {varText2} **hit**. **:blue[{selectedGeneName}]** {varText} **:blue[{protRank}]**.")
|
| 206 |
+
|
| 207 |
+
if (numProtHits/numProtDetected)>0.05:
|
| 208 |
+
fragHitRatio = np.round((numProtHits/numProtDetected)*100, 1)
|
| 209 |
+
st.write(f"**:blue[{fragId}]** is **:red[promiscuous]** fragment (**hit**/enriched ratio is **:red[{fragHitRatio}]**%).")
|
| 210 |
+
|
| 211 |
+
col6, col7 = st.columns(2)
|
| 212 |
+
with col6:
|
| 213 |
+
st.image(os.path.join(ROOT, "../assets/ligandVolcanoPlots/") + fragId + ".png")
|
| 214 |
+
with col7:
|
| 215 |
+
if len(tempDf2.index) == 0:
|
| 216 |
+
st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
|
| 217 |
+
formatter = {
|
| 218 |
+
'accession': ('Protein', {**PINLEFT, 'width': 15}),
|
| 219 |
+
'geneName': ('Gene', {**PINLEFT, 'width': 15}),
|
| 220 |
+
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 15}),
|
| 221 |
+
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 25}),
|
| 222 |
+
'ligHits': ('# Fragment Hits', {'width': 15}),
|
| 223 |
+
'mdfClass': ('fS', {'width': 10})
|
| 224 |
+
}
|
| 225 |
+
data = draw_grid(
|
| 226 |
+
intDf3, formatter=formatter, fit_columns=True, selection='none', max_height=340)
|
| 227 |
+
if not isinstance(protRank, str):
|
| 228 |
+
if protRank < 5:
|
| 229 |
+
st.subheader(f"**:blue[{fragId}-{selectedGeneName}]** interaction: :first_place_medal:")
|
| 230 |
+
st.write(f"**:blue[{fragId}]** is in top 5 **Fragment hits** for **{selectedGeneName}**. **:blue[{selectedGeneName}]** is in top 5 **Protein hits** for **{fragId}**.")
|
| 231 |
+
|
| 232 |
+
del tempDf2
|
| 233 |
+
############# Fingerprinting / Elaborates Data ######################
|
| 234 |
+
|
| 235 |
+
gen2List = ["C027", "C028", "C044", "C046", "C064", "C115", "C127", "C160", "C179", "C186", "C197", "C219", "C240", "C270", "C275", "C303", "C310", "C320", "C378", "C391"]
|
| 236 |
+
if fragId in gen2List:
|
| 237 |
+
st.markdown("""---""")
|
| 238 |
+
# st.sidebar.markdown("""---""")
|
| 239 |
+
|
| 240 |
+
############ Elaborates Protein Centric View ##########################
|
| 241 |
+
st.subheader(f"Second generation fragments (Gen2) of **:blue[{fragId}]** that compete **:blue[{selectedGeneName}]**")
|
| 242 |
+
|
| 243 |
+
gen1Df = fpDf[fpDf["gen1Lig"]==fragId]
|
| 244 |
+
|
| 245 |
+
numGen2Ligs = len(np.unique(gen1Df['fragId']))
|
| 246 |
+
|
| 247 |
+
temp4Df = gen1Df[gen1Df["accession"]==myPid]
|
| 248 |
+
temp4Df = temp4Df[temp4Df["mdfClass"]>=1]
|
| 249 |
+
# temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
|
| 250 |
+
temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
|
| 251 |
+
|
| 252 |
+
sidebarList1 = temp4Df["fragId"]
|
| 253 |
+
|
| 254 |
+
if len(temp4Df.index)>0:
|
| 255 |
+
bestGen2Lig = temp4Df['fragId'].values[0]
|
| 256 |
+
varText5 = "is best Gen2 fragment hit."
|
| 257 |
+
else:
|
| 258 |
+
bestGen2Lig = ""
|
| 259 |
+
varText5 = ""
|
| 260 |
+
|
| 261 |
+
st.write(f"**:blue[{numGen2Ligs}]** Gen2 fragments were screened in **competition** experiments against Gen1 fragment **{fragId}**. **:blue[{len(temp4Df.index)}]**/{numGen2Ligs} Gen2 fragments of **{fragId}** pass **low** filter Set (**:blue[fS2]**).")
|
| 262 |
+
# **:blue[{bestGen2Lig}]** {varText5}")
|
| 263 |
+
# **compete** **:blue[{selectedGeneName}]** after applying
|
| 264 |
+
|
| 265 |
+
formatter = {
|
| 266 |
+
'fragId': ('Gen2', {**PINLEFT, 'width': 10}),
|
| 267 |
+
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 10}),
|
| 268 |
+
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 20}),
|
| 269 |
+
'protHits': ('# Gen2 Protein Hits', {'width': 15}),
|
| 270 |
+
'mdfClass': ('fS2', {'width': 10})
|
| 271 |
+
}
|
| 272 |
+
|
| 273 |
+
col10, col11 = st.columns(2)
|
| 274 |
+
with col10:
|
| 275 |
+
st.write(f":blue[Hits] (fS2 > 0)")
|
| 276 |
+
if len(temp4Df.index)>0:
|
| 277 |
+
data = draw_grid(
|
| 278 |
+
temp4Df, formatter=formatter, fit_columns=True, selection='none')
|
| 279 |
+
|
| 280 |
+
temp4Df = gen1Df[gen1Df["accession"]==myPid]
|
| 281 |
+
temp4Df = temp4Df[temp4Df["mdfClass"] < 1]
|
| 282 |
+
temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
|
| 283 |
+
|
| 284 |
+
sidebarList2 = temp4Df["fragId"]
|
| 285 |
+
|
| 286 |
+
with col11:
|
| 287 |
+
st.write(f":orange[not] Hits (fS2 = 0)")
|
| 288 |
+
data = draw_grid(
|
| 289 |
+
temp4Df, formatter=formatter, fit_columns=True, selection='none')
|
| 290 |
+
|
| 291 |
+
temp4Df = gen1Df[gen1Df["accession"]==myPid]
|
| 292 |
+
temp4Df = temp4Df.sort_values(by='l2fc', ascending=True)
|
| 293 |
+
temp4Df = temp4Df.sort_values(by=['mdfClass', 'l2fc'], ascending=[False, True])
|
| 294 |
+
|
| 295 |
+
sideBarList = pd.concat([sidebarList1, sidebarList2], sort=False)
|
| 296 |
+
|
| 297 |
+
############ Elaborates Side Bar Selection ##########################
|
| 298 |
+
|
| 299 |
+
# gen2Id = st.sidebar.selectbox(label = "Select Gen2 Fragment", options = temp4Df["fragId"])
|
| 300 |
+
gen2Id = st.sidebar.selectbox(label = "Select Gen2 Fragment", options = sideBarList)
|
| 301 |
+
st.sidebar.image(os.path.join(ROOT, "../assets/fragFiguresSingle/") + gen2Id + ".png")
|
| 302 |
+
|
| 303 |
+
############ Elaborates Fragment Centric View ##########################
|
| 304 |
+
|
| 305 |
+
st.subheader(f"Proteins competed by **:blue[{gen2Id}]**")
|
| 306 |
+
|
| 307 |
+
gen2Df = gen1Df[gen1Df["fragId"]==gen2Id]
|
| 308 |
+
|
| 309 |
+
tempDf3 = applyFilters(gen2Df, '< 0.05', '< 0.25', 'Low')
|
| 310 |
+
tempDf3 = tempDf3.sort_values(by=['ligHits', 'l2fc'], ascending=[True, True])
|
| 311 |
+
|
| 312 |
+
[bestProt2, numProtHits2, protRank2, varText3, varText4] = getVarText(tempDf3)
|
| 313 |
+
|
| 314 |
+
st.write(f"**:blue[{len(gen2Df.index)}]** proteins were reduced in **:blue[{gen2Id}] competition** experiment (Fc compared to **{fragId}** control). **:blue[{numProtHits2}]** of those proteins are labelled as **hits** by applying **low** filter Set **(:blue[fS2])**. **:blue[{bestProt2}]** {varText4} **hit**. **:blue[{selectedGeneName}]** {varText3} **:blue[{protRank2}]**.")
|
| 315 |
+
|
| 316 |
+
col1, col2, col3, colX, colY, colZ = st.columns(6)
|
| 317 |
+
with col1:
|
| 318 |
+
pFilterFP = st.selectbox(label = "*P* Value", help = "Select threshold for signifiance", options = ('< 0.05', 'no filter', '< 0.01'), key = 'pFilterFP')
|
| 319 |
+
with col2:
|
| 320 |
+
pAdjFilterFP = st.selectbox(label = "adjusted *P* Value", help = "Select threshold for signifiance", options = ('< 0.25', 'no filter', '< 0.1', '< 0.05'), key = 'pAdjFilterFP')
|
| 321 |
+
with col3:
|
| 322 |
+
help_input2='''
|
| 323 |
+
|
| 324 |
+
**:blue[0]**. no filter\n
|
| 325 |
+
**:blue[1]**. Low Confidence ('**:blue[hits]**'): Fc < -1, p < 0.05, adj.p < 0.25, Rank < 500\n
|
| 326 |
+
**:blue[2]**. Medium confidence (also '**:blue[hits]**'): Fc < -1.65, p < 0.05, adj.p < 0.25, Rank < 500\n
|
| 327 |
+
**:blue[3]**. High Confidence (also '**:blue[hits]**'): Fc < -2.3, p < 0.01, adj.p < 0.1, Rank < 500'''
|
| 328 |
+
mdfClassFP = st.selectbox(label = "Gen2 Fragment filter Set (**:blue[fS2]**)", help = help_input2, options = ('Low (hits)', 'Medium (hits)', 'no filter', 'High (hits)'), key = 'mdfClassFP')
|
| 329 |
+
|
| 330 |
+
if len(tempDf3.index) == 0:
|
| 331 |
+
st.write("**:red[No]** data to display with selected filters. Applied **:blue[no filter]**")
|
| 332 |
+
gen2Df2 = applyFilters(gen2Df, 'no filter', 'no filter', 'no filter')
|
| 333 |
+
|
| 334 |
+
else:
|
| 335 |
+
gen2Df2 = applyFilters(gen2Df, pFilterFP, pAdjFilterFP, mdfClassFP)
|
| 336 |
+
|
| 337 |
+
gen2Df2 = gen2Df2.sort_values(by=['ligHits', 'l2fc'], ascending=[True, True])
|
| 338 |
+
|
| 339 |
+
col8, col9 = st.columns(2)
|
| 340 |
+
with col8:
|
| 341 |
+
formatter = {
|
| 342 |
+
'accession': ('Protein', {**PINLEFT, 'width': 15}),
|
| 343 |
+
'geneName': ('Gene', {**PINLEFT, 'width': 15}),
|
| 344 |
+
'l2fc': ('Fc(log2)', {**PRECISION_TWO, 'width': 10}),
|
| 345 |
+
'l2fcM': ('Fc Median adjusted', {**PRECISION_TWO, 'width': 20}),
|
| 346 |
+
'ligHits': ('# Gen2 Fragment Hits', {'width': 15}),
|
| 347 |
+
'mdfClass': ('fS2', {'width': 10})
|
| 348 |
+
}
|
| 349 |
+
data = draw_grid(
|
| 350 |
+
gen2Df2, formatter=formatter, fit_columns=True, selection='none', max_height=340)
|
| 351 |
+
with col9:
|
| 352 |
+
st.image(os.path.join(ROOT, "../assets/gen2VolcanoPlots/") + gen2Id + ".png")
|
assets/faq/ddb1.png
ADDED
|
assets/fragFiguresSingle/C001.png
ADDED
|
assets/fragFiguresSingle/C002.png
ADDED
|
assets/fragFiguresSingle/C003.png
ADDED
|
assets/fragFiguresSingle/C004.png
ADDED
|
assets/fragFiguresSingle/C006.png
ADDED
|
assets/fragFiguresSingle/C007.png
ADDED
|
assets/fragFiguresSingle/C008.png
ADDED
|
assets/fragFiguresSingle/C009.png
ADDED
|
assets/fragFiguresSingle/C010.png
ADDED
|
assets/fragFiguresSingle/C011.png
ADDED
|
assets/fragFiguresSingle/C012.png
ADDED
|
assets/fragFiguresSingle/C013.png
ADDED
|
assets/fragFiguresSingle/C014.png
ADDED
|
assets/fragFiguresSingle/C015.png
ADDED
|
assets/fragFiguresSingle/C017.png
ADDED
|
assets/fragFiguresSingle/C018.png
ADDED
|
assets/fragFiguresSingle/C020.png
ADDED
|
assets/fragFiguresSingle/C021.png
ADDED
|
assets/fragFiguresSingle/C022.png
ADDED
|
assets/fragFiguresSingle/C023.png
ADDED
|
assets/fragFiguresSingle/C024.png
ADDED
|
assets/fragFiguresSingle/C025.png
ADDED
|
assets/fragFiguresSingle/C026.png
ADDED
|
assets/fragFiguresSingle/C027-Dipyri.png
ADDED
|
assets/fragFiguresSingle/C027-E1.png
ADDED
|
assets/fragFiguresSingle/C027-E2.png
ADDED
|
assets/fragFiguresSingle/C027-E3.png
ADDED
|
assets/fragFiguresSingle/C027-E4.png
ADDED
|
assets/fragFiguresSingle/C027-E5.png
ADDED
|
assets/fragFiguresSingle/C027-E7.png
ADDED
|
assets/fragFiguresSingle/C027-E8.png
ADDED
|
assets/fragFiguresSingle/C027-E9.png
ADDED
|
assets/fragFiguresSingle/C027-N.png
ADDED
|
assets/fragFiguresSingle/C027-NBMPR.png
ADDED
|
assets/fragFiguresSingle/C027.png
ADDED
|
assets/fragFiguresSingle/C028-E2.png
ADDED
|
assets/fragFiguresSingle/C028-E3.png
ADDED
|
assets/fragFiguresSingle/C028-E4.png
ADDED
|
assets/fragFiguresSingle/C028-E5.png
ADDED
|
assets/fragFiguresSingle/C028-E6.png
ADDED
|
assets/fragFiguresSingle/C028-E7.png
ADDED
|
assets/fragFiguresSingle/C028.png
ADDED
|
assets/fragFiguresSingle/C029.png
ADDED
|
assets/fragFiguresSingle/C030.png
ADDED
|
assets/fragFiguresSingle/C031.png
ADDED
|
assets/fragFiguresSingle/C032.png
ADDED
|
assets/fragFiguresSingle/C033.png
ADDED
|
assets/fragFiguresSingle/C034.png
ADDED
|