File size: 5,564 Bytes
6ff6cb6
 
 
84bfe38
 
6ff6cb6
 
 
 
13dd954
6ff6cb6
 
 
 
13dd954
 
6ff6cb6
 
c2a65c2
 
 
 
 
 
13dd954
 
6ff6cb6
 
 
 
 
47f28c5
a064f46
6ff6cb6
 
 
 
47f28c5
 
6ff6cb6
 
 
84bfe38
6ff6cb6
84bfe38
6ff6cb6
 
 
24f13dd
6ff6cb6
 
 
 
 
 
13dd954
6ff6cb6
 
 
 
 
 
 
 
 
 
 
 
 
47f28c5
6ff6cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
84bfe38
6ff6cb6
 
13dd954
6ff6cb6
 
13dd954
6ff6cb6
 
 
 
 
 
 
 
 
 
 
 
dba982b
6ff6cb6
dba982b
6ff6cb6
13dd954
 
6ff6cb6
 
 
c2a65c2
 
 
6ff6cb6
 
 
13dd954
6ff6cb6
 
84bfe38
13dd954
6ff6cb6
13dd954
 
 
6ff6cb6
13dd954
 
6ff6cb6
dfb63ac
13dd954
 
6ff6cb6
dfb63ac
 
13dd954
84bfe38
13dd954
6ff6cb6
 
 
 
 
 
 
 
dba982b
13dd954
6ff6cb6
 
 
 
 
 
dba982b
13dd954
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import asyncio
import re
from typing import Dict, List

import gradio as gr
import httpx
from huggingface_hub import ModelCard
from cashews import cache


cache.setup("mem://")
API_URL = "https://davanstrien-huggingface-datasets-search-v2.hf.space/similar"
HF_API_URL = "https://huggingface.co/api/datasets"
README_URL_TEMPLATE = "https://huggingface.co/datasets/{}/raw/main/README.md"


async def fetch_similar_datasets(dataset_id: str, limit: int = 10) -> List[Dict]:
    async with httpx.AsyncClient() as client:
        response = await client.get(f"{API_URL}?dataset_id={dataset_id}&n={limit + 1}")
        if response.status_code == 200:
            results = response.json()["results"]
            # Remove the input dataset from the results
            return [r for r in results if r["dataset_id"] != dataset_id][:limit]
        return []


async def fetch_dataset_card(dataset_id: str) -> str:
    url = README_URL_TEMPLATE.format(dataset_id)
    async with httpx.AsyncClient() as client:
        response = await client.get(url)
        return ModelCard(response.text).text if response.status_code == 200 else ""


async def fetch_dataset_info(dataset_id: str) -> Dict:
    async with httpx.AsyncClient() as client:
        response = await client.get(f"{HF_API_URL}/{dataset_id}")
        return response.json() if response.status_code == 200 else {}


def format_results(
    results: List[Dict], dataset_cards: List[str], dataset_infos: List[Dict]
) -> str:
    markdown = (
        "<h1 style='text-align: center;'>&#x2728; Similar Datasets &#x2728;</h1>\n\n"
    )
    for result, card, info in zip(results, dataset_cards, dataset_infos):
        hub_id = result["dataset_id"]
        similarity = result["similarity"]
        url = f"https://huggingface.co/datasets/{hub_id}"

        # Extract title from the card
        title_match = re.match(r"^#\s*(.+)", card, re.MULTILINE)
        title = title_match[1] if title_match else hub_id

        header = f"## [{title}]({url})"
        markdown += header + "\n"
        markdown += f"**Similarity Score:** {similarity:.4f}\n\n"

        if info:
            downloads = info.get("downloads", 0)
            likes = info.get("likes", 0)
            last_modified = info.get("lastModified", "N/A")
            markdown += f"**Downloads:** {downloads} | **Likes:** {likes} | **Last Modified:** {last_modified}\n\n"

        if card:
            # Remove the title from the card content
            card_without_title = re.sub(
                r"^#.*\n", "", card, count=1, flags=re.MULTILINE
            )

            # Split the card into paragraphs
            paragraphs = card_without_title.split("\n\n")

            # Find the first non-empty text paragraph that's not just an image
            preview = next(
                (
                    p
                    for p in paragraphs
                    if p.strip()
                    and not p.strip().startswith("![")
                    and not p.strip().startswith("<img")
                ),
                "No preview available.",
            )

            # Limit the preview to a reasonable length (e.g., 300 characters)
            preview = f"{preview[:300]}..." if len(preview) > 300 else preview

            # Add the preview
            markdown += f"{preview}\n\n"

            # Limit image size in the full dataset card
            full_card = re.sub(
                r'<img src="([^"]+)"',
                r'<img src="\1" style="max-width: 300px; max-height: 300px;"',
                card_without_title,
            )
            full_card = re.sub(
                r"!\[([^\]]*)\]\(([^\)]+)\)",
                r'<img src="\2" alt="\1" style="max-width: 300px; max-height: 300px;">',
                full_card,
            )
            markdown += f"<details><summary>Full Dataset Card</summary>\n\n{full_card}\n\n</details>\n\n"

        markdown += "---\n\n"

    return markdown


async def search_similar_datasets(dataset_id: str, limit: int = 10):
    results = await fetch_similar_datasets(dataset_id, limit)

    if not results:
        return "No similar datasets found."

    # Fetch dataset cards and info concurrently
    dataset_cards = await asyncio.gather(
        *[fetch_dataset_card(result["dataset_id"]) for result in results]
    )
    dataset_infos = await asyncio.gather(
        *[fetch_dataset_info(result["dataset_id"]) for result in results]
    )

    return format_results(results, dataset_cards, dataset_infos)


with gr.Blocks() as demo:
    gr.Markdown("## &#129303; Dataset Similarity Search")
    with gr.Row():
        gr.Markdown(
            "This Gradio app allows you to find similar datasets based on a given dataset ID. "
            "Enter a dataset ID (e.g., 'airtrain-ai/fineweb-edu-fortified') to find similar datasets with previews of their dataset cards."
        )
    with gr.Row():
        dataset_id = gr.Textbox(
            value="airtrain-ai/fineweb-edu-fortified",
            label="Dataset ID (e.g., airtrain-ai/fineweb-edu-fortified)",
        )

    with gr.Row():
        search_btn = gr.Button("Search Similar Datasets")
        max_results = gr.Slider(
            minimum=1,
            maximum=50,
            step=1,
            value=10,
            label="Maximum number of results",
        )

    results = gr.Markdown()
    search_btn.click(
        lambda dataset_id, limit: asyncio.run(
            search_similar_datasets(dataset_id, limit)
        ),
        inputs=[dataset_id, max_results],
        outputs=results,
    )

demo.launch()