File size: 5,564 Bytes
6ff6cb6 84bfe38 6ff6cb6 13dd954 6ff6cb6 13dd954 6ff6cb6 c2a65c2 13dd954 6ff6cb6 47f28c5 a064f46 6ff6cb6 47f28c5 6ff6cb6 84bfe38 6ff6cb6 84bfe38 6ff6cb6 24f13dd 6ff6cb6 13dd954 6ff6cb6 47f28c5 6ff6cb6 84bfe38 6ff6cb6 13dd954 6ff6cb6 13dd954 6ff6cb6 dba982b 6ff6cb6 dba982b 6ff6cb6 13dd954 6ff6cb6 c2a65c2 6ff6cb6 13dd954 6ff6cb6 84bfe38 13dd954 6ff6cb6 13dd954 6ff6cb6 13dd954 6ff6cb6 dfb63ac 13dd954 6ff6cb6 dfb63ac 13dd954 84bfe38 13dd954 6ff6cb6 dba982b 13dd954 6ff6cb6 dba982b 13dd954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import asyncio
import re
from typing import Dict, List
import gradio as gr
import httpx
from huggingface_hub import ModelCard
from cashews import cache
cache.setup("mem://")
API_URL = "https://davanstrien-huggingface-datasets-search-v2.hf.space/similar"
HF_API_URL = "https://huggingface.co/api/datasets"
README_URL_TEMPLATE = "https://huggingface.co/datasets/{}/raw/main/README.md"
async def fetch_similar_datasets(dataset_id: str, limit: int = 10) -> List[Dict]:
async with httpx.AsyncClient() as client:
response = await client.get(f"{API_URL}?dataset_id={dataset_id}&n={limit + 1}")
if response.status_code == 200:
results = response.json()["results"]
# Remove the input dataset from the results
return [r for r in results if r["dataset_id"] != dataset_id][:limit]
return []
async def fetch_dataset_card(dataset_id: str) -> str:
url = README_URL_TEMPLATE.format(dataset_id)
async with httpx.AsyncClient() as client:
response = await client.get(url)
return ModelCard(response.text).text if response.status_code == 200 else ""
async def fetch_dataset_info(dataset_id: str) -> Dict:
async with httpx.AsyncClient() as client:
response = await client.get(f"{HF_API_URL}/{dataset_id}")
return response.json() if response.status_code == 200 else {}
def format_results(
results: List[Dict], dataset_cards: List[str], dataset_infos: List[Dict]
) -> str:
markdown = (
"<h1 style='text-align: center;'>✨ Similar Datasets ✨</h1>\n\n"
)
for result, card, info in zip(results, dataset_cards, dataset_infos):
hub_id = result["dataset_id"]
similarity = result["similarity"]
url = f"https://huggingface.co/datasets/{hub_id}"
# Extract title from the card
title_match = re.match(r"^#\s*(.+)", card, re.MULTILINE)
title = title_match[1] if title_match else hub_id
header = f"## [{title}]({url})"
markdown += header + "\n"
markdown += f"**Similarity Score:** {similarity:.4f}\n\n"
if info:
downloads = info.get("downloads", 0)
likes = info.get("likes", 0)
last_modified = info.get("lastModified", "N/A")
markdown += f"**Downloads:** {downloads} | **Likes:** {likes} | **Last Modified:** {last_modified}\n\n"
if card:
# Remove the title from the card content
card_without_title = re.sub(
r"^#.*\n", "", card, count=1, flags=re.MULTILINE
)
# Split the card into paragraphs
paragraphs = card_without_title.split("\n\n")
# Find the first non-empty text paragraph that's not just an image
preview = next(
(
p
for p in paragraphs
if p.strip()
and not p.strip().startswith("![")
and not p.strip().startswith("<img")
),
"No preview available.",
)
# Limit the preview to a reasonable length (e.g., 300 characters)
preview = f"{preview[:300]}..." if len(preview) > 300 else preview
# Add the preview
markdown += f"{preview}\n\n"
# Limit image size in the full dataset card
full_card = re.sub(
r'<img src="([^"]+)"',
r'<img src="\1" style="max-width: 300px; max-height: 300px;"',
card_without_title,
)
full_card = re.sub(
r"!\[([^\]]*)\]\(([^\)]+)\)",
r'<img src="\2" alt="\1" style="max-width: 300px; max-height: 300px;">',
full_card,
)
markdown += f"<details><summary>Full Dataset Card</summary>\n\n{full_card}\n\n</details>\n\n"
markdown += "---\n\n"
return markdown
async def search_similar_datasets(dataset_id: str, limit: int = 10):
results = await fetch_similar_datasets(dataset_id, limit)
if not results:
return "No similar datasets found."
# Fetch dataset cards and info concurrently
dataset_cards = await asyncio.gather(
*[fetch_dataset_card(result["dataset_id"]) for result in results]
)
dataset_infos = await asyncio.gather(
*[fetch_dataset_info(result["dataset_id"]) for result in results]
)
return format_results(results, dataset_cards, dataset_infos)
with gr.Blocks() as demo:
gr.Markdown("## 🤗 Dataset Similarity Search")
with gr.Row():
gr.Markdown(
"This Gradio app allows you to find similar datasets based on a given dataset ID. "
"Enter a dataset ID (e.g., 'airtrain-ai/fineweb-edu-fortified') to find similar datasets with previews of their dataset cards."
)
with gr.Row():
dataset_id = gr.Textbox(
value="airtrain-ai/fineweb-edu-fortified",
label="Dataset ID (e.g., airtrain-ai/fineweb-edu-fortified)",
)
with gr.Row():
search_btn = gr.Button("Search Similar Datasets")
max_results = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=10,
label="Maximum number of results",
)
results = gr.Markdown()
search_btn.click(
lambda dataset_id, limit: asyncio.run(
search_similar_datasets(dataset_id, limit)
),
inputs=[dataset_id, max_results],
outputs=results,
)
demo.launch()
|