Commit
·
84bfe38
1
Parent(s):
85ef5ed
add results number slider
Browse files
app.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from qdrant_client import QdrantClient
|
| 3 |
-
from qdrant_client import models
|
| 4 |
-
from sentence_transformers import SentenceTransformer
|
| 5 |
-
from dotenv import load_dotenv
|
| 6 |
import os
|
| 7 |
from functools import lru_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
load_dotenv()
|
| 10 |
|
|
@@ -22,25 +23,31 @@ client = QdrantClient(
|
|
| 22 |
|
| 23 |
|
| 24 |
def format_results(results):
|
| 25 |
-
markdown =
|
|
|
|
|
|
|
|
|
|
| 26 |
for result in results:
|
| 27 |
hub_id = result.payload["id"]
|
|
|
|
| 28 |
url = f"https://huggingface.co/datasets/{hub_id}"
|
| 29 |
header = f"## [{hub_id}]({url})"
|
| 30 |
markdown += header + "\n"
|
| 31 |
-
markdown +=
|
|
|
|
|
|
|
| 32 |
return markdown
|
| 33 |
|
| 34 |
|
| 35 |
@lru_cache(maxsize=100_000)
|
| 36 |
-
def search(query: str):
|
| 37 |
query_ = sentence_embedding_model.encode(
|
| 38 |
f"Represent this sentence for searching relevant passages:{query}"
|
| 39 |
)
|
| 40 |
results = client.search(
|
| 41 |
collection_name="dataset_cards",
|
| 42 |
query_vector=query_,
|
| 43 |
-
limit=
|
| 44 |
)
|
| 45 |
return format_results(results)
|
| 46 |
|
|
@@ -68,17 +75,19 @@ def hub_id_qdrant_id(hub_id):
|
|
| 68 |
|
| 69 |
|
| 70 |
@lru_cache()
|
| 71 |
-
def recommend(hub_id):
|
| 72 |
positive_id = hub_id_qdrant_id(hub_id)
|
| 73 |
-
results = client.recommend(
|
|
|
|
|
|
|
| 74 |
return format_results(results)
|
| 75 |
|
| 76 |
|
| 77 |
-
def query(search_term, search_type):
|
| 78 |
if search_type == "Recommend similar datasets":
|
| 79 |
-
return recommend(search_term)
|
| 80 |
else:
|
| 81 |
-
return search(search_term)
|
| 82 |
|
| 83 |
|
| 84 |
with gr.Blocks() as demo:
|
|
@@ -94,6 +103,7 @@ with gr.Blocks() as demo:
|
|
| 94 |
value="movie review sentiment",
|
| 95 |
label="hub id i.e. IMDB or query i.e. movie review sentiment",
|
| 96 |
)
|
|
|
|
| 97 |
with gr.Row():
|
| 98 |
with gr.Row():
|
| 99 |
find_similar_btn = gr.Button("Search")
|
|
@@ -103,9 +113,17 @@ with gr.Blocks() as demo:
|
|
| 103 |
value="Semantic Search",
|
| 104 |
interactive=True,
|
| 105 |
)
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
results = gr.Markdown()
|
| 108 |
-
find_similar_btn.click(query, [search_term, search_type], results)
|
| 109 |
|
| 110 |
|
| 111 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from functools import lru_cache
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from qdrant_client import QdrantClient, models
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
|
| 10 |
load_dotenv()
|
| 11 |
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
def format_results(results):
|
| 26 |
+
markdown = (
|
| 27 |
+
"<h1 style='text-align: center;'> ✨ Dataset Search Results ✨"
|
| 28 |
+
" </h1> \n\n"
|
| 29 |
+
)
|
| 30 |
for result in results:
|
| 31 |
hub_id = result.payload["id"]
|
| 32 |
+
download_number = result.payload["downloads"]
|
| 33 |
url = f"https://huggingface.co/datasets/{hub_id}"
|
| 34 |
header = f"## [{hub_id}]({url})"
|
| 35 |
markdown += header + "\n"
|
| 36 |
+
markdown += f"**Downloads:** {download_number}\n\n"
|
| 37 |
+
markdown += f"{result.payload['section_text']} \n"
|
| 38 |
+
|
| 39 |
return markdown
|
| 40 |
|
| 41 |
|
| 42 |
@lru_cache(maxsize=100_000)
|
| 43 |
+
def search(query: str, limit: Optional[int] = 10):
|
| 44 |
query_ = sentence_embedding_model.encode(
|
| 45 |
f"Represent this sentence for searching relevant passages:{query}"
|
| 46 |
)
|
| 47 |
results = client.search(
|
| 48 |
collection_name="dataset_cards",
|
| 49 |
query_vector=query_,
|
| 50 |
+
limit=limit,
|
| 51 |
)
|
| 52 |
return format_results(results)
|
| 53 |
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
@lru_cache()
|
| 78 |
+
def recommend(hub_id, limit: Optional[int] = 10):
|
| 79 |
positive_id = hub_id_qdrant_id(hub_id)
|
| 80 |
+
results = client.recommend(
|
| 81 |
+
collection_name=collection_name, positive=[positive_id], limit=limit
|
| 82 |
+
)
|
| 83 |
return format_results(results)
|
| 84 |
|
| 85 |
|
| 86 |
+
def query(search_term, search_type, limit: Optional[int] = 10):
|
| 87 |
if search_type == "Recommend similar datasets":
|
| 88 |
+
return recommend(search_term, limit)
|
| 89 |
else:
|
| 90 |
+
return search(search_term, limit)
|
| 91 |
|
| 92 |
|
| 93 |
with gr.Blocks() as demo:
|
|
|
|
| 103 |
value="movie review sentiment",
|
| 104 |
label="hub id i.e. IMDB or query i.e. movie review sentiment",
|
| 105 |
)
|
| 106 |
+
|
| 107 |
with gr.Row():
|
| 108 |
with gr.Row():
|
| 109 |
find_similar_btn = gr.Button("Search")
|
|
|
|
| 113 |
value="Semantic Search",
|
| 114 |
interactive=True,
|
| 115 |
)
|
| 116 |
+
with gr.Column():
|
| 117 |
+
max_results = gr.Slider(
|
| 118 |
+
minimum=1,
|
| 119 |
+
maximum=50,
|
| 120 |
+
step=1,
|
| 121 |
+
value=10,
|
| 122 |
+
label="Maximum number of results",
|
| 123 |
+
help="This is the maximum number of results that will be returned",
|
| 124 |
+
)
|
| 125 |
results = gr.Markdown()
|
| 126 |
+
find_similar_btn.click(query, [search_term, search_type, max_results], results)
|
| 127 |
|
| 128 |
|
| 129 |
demo.launch()
|