File size: 11,351 Bytes
6ff6cb6 84bfe38 6ff6cb6 eb9f45f 2834fe9 13dd954 6ff6cb6 2834fe9 6ff6cb6 13dd954 6ff6cb6 2834fe9 87a91f0 13dd954 eb9f45f 2834fe9 eb9f45f 6ff6cb6 47f28c5 a064f46 6ff6cb6 47f28c5 6ff6cb6 84bfe38 6ff6cb6 84bfe38 6ff6cb6 24f13dd 6ff6cb6 c1b15b4 13dd954 6ff6cb6 47f28c5 6ff6cb6 84bfe38 6ff6cb6 13dd954 6ff6cb6 13dd954 6ff6cb6 dba982b 6ff6cb6 dba982b 6ff6cb6 13dd954 6ff6cb6 87a91f0 6ff6cb6 13dd954 6ff6cb6 84bfe38 13dd954 6ff6cb6 13dd954 2834fe9 13dd954 dd2978a eb9f45f dd2978a eb9f45f dd2978a 13dd954 2834fe9 c035c1f 2834fe9 13dd954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import asyncio
import re
from typing import Dict, List
import gradio as gr
import httpx
from cashews import cache
from huggingface_hub import ModelCard
from ragatouille_search import create_ragatouille_interface
cache.setup("mem://")
API_URL = "https://davanstrien-huggingface-datasets-search-v2.hf.space"
HF_API_URL = "https://huggingface.co/api/datasets"
README_URL_TEMPLATE = "https://huggingface.co/datasets/{}/raw/main/README.md"
async def fetch_similar_datasets(dataset_id: str, limit: int = 10) -> List[Dict]:
async with httpx.AsyncClient() as client:
response = await client.get(
f"{API_URL}/similar?dataset_id={dataset_id}&n={limit + 1}"
)
if response.status_code == 200:
results = response.json()["results"]
# Remove the input dataset from the results
return [r for r in results if r["dataset_id"] != dataset_id][:limit]
return []
async def fetch_similar_datasets_by_text(query: str, limit: int = 10) -> List[Dict]:
async with httpx.AsyncClient(timeout=30) as client:
response = await client.get(
f"{API_URL}/similar-text", params={"query": query, "n": limit + 1}
)
if response.status_code == 200:
results = response.json()["results"]
return results[:limit]
return []
async def search_similar_datasets_by_text(query: str, limit: int = 10):
results = await fetch_similar_datasets_by_text(query, limit)
if not results:
return "No similar datasets found."
# Fetch dataset cards and info concurrently
dataset_cards = await asyncio.gather(
*[fetch_dataset_card(result["dataset_id"]) for result in results]
)
dataset_infos = await asyncio.gather(
*[fetch_dataset_info(result["dataset_id"]) for result in results]
)
return format_results(results, dataset_cards, dataset_infos)
async def fetch_dataset_card(dataset_id: str) -> str:
url = README_URL_TEMPLATE.format(dataset_id)
async with httpx.AsyncClient() as client:
response = await client.get(url)
return ModelCard(response.text).text if response.status_code == 200 else ""
async def fetch_dataset_info(dataset_id: str) -> Dict:
async with httpx.AsyncClient() as client:
response = await client.get(f"{HF_API_URL}/{dataset_id}")
return response.json() if response.status_code == 200 else {}
def format_results(
results: List[Dict], dataset_cards: List[str], dataset_infos: List[Dict]
) -> str:
markdown = (
"<h1 style='text-align: center;'>✨ Similar Datasets ✨</h1>\n\n"
)
for result, card, info in zip(results, dataset_cards, dataset_infos):
hub_id = result["dataset_id"]
similarity = result["similarity"]
url = f"https://huggingface.co/datasets/{hub_id}"
# Always use the Hub ID as the title
header = f"## [{hub_id}]({url})"
markdown += header + "\n"
markdown += f"**Similarity Score:** {similarity:.4f}\n\n"
if info:
downloads = info.get("downloads", 0)
likes = info.get("likes", 0)
last_modified = info.get("lastModified", "N/A")
markdown += f"**Downloads:** {downloads} | **Likes:** {likes} | **Last Modified:** {last_modified}\n\n"
if card:
# Remove the title from the card content
card_without_title = re.sub(
r"^#.*\n", "", card, count=1, flags=re.MULTILINE
)
# Split the card into paragraphs
paragraphs = card_without_title.split("\n\n")
# Find the first non-empty text paragraph that's not just an image
preview = next(
(
p
for p in paragraphs
if p.strip()
and not p.strip().startswith("![")
and not p.strip().startswith("<img")
),
"No preview available.",
)
# Limit the preview to a reasonable length (e.g., 300 characters)
preview = f"{preview[:300]}..." if len(preview) > 300 else preview
# Add the preview
markdown += f"{preview}\n\n"
# Limit image size in the full dataset card
full_card = re.sub(
r'<img src="([^"]+)"',
r'<img src="\1" style="max-width: 300px; max-height: 300px;"',
card_without_title,
)
full_card = re.sub(
r"!\[([^\]]*)\]\(([^\)]+)\)",
r'<img src="\2" alt="\1" style="max-width: 300px; max-height: 300px;">',
full_card,
)
markdown += f"<details><summary>Full Dataset Card</summary>\n\n{full_card}\n\n</details>\n\n"
markdown += "---\n\n"
return markdown
async def search_similar_datasets(dataset_id: str, limit: int = 10):
results = await fetch_similar_datasets(dataset_id, limit)
if not results:
return "No similar datasets found."
# Fetch dataset cards and info concurrently
dataset_cards = await asyncio.gather(
*[fetch_dataset_card(result["dataset_id"]) for result in results]
)
dataset_infos = await asyncio.gather(
*[fetch_dataset_info(result["dataset_id"]) for result in results]
)
return format_results(results, dataset_cards, dataset_infos)
async def search_viewer(query: str, limit: int = 10):
async with httpx.AsyncClient(timeout=30) as client:
response = await client.get(
f"{API_URL}/search-viewer", params={"query": query, "n": limit}
)
if response.status_code == 200:
results = response.json()["results"]
return format_viewer_results(results)
return "No results found."
def format_viewer_results(results: List[Dict]) -> str:
html = "<div style='height: 600px; overflow-y: auto;'>"
for result in results:
dataset_id = result["dataset_id"]
html += f"""
<div style='margin-bottom: 20px; border: 1px solid #ddd; padding: 10px;'>
<h3>{dataset_id}</h3>
<p><strong>Similarity Score:</strong> {result['similarity']:.4f}</p>
<iframe
src="https://huggingface.co/datasets/{dataset_id}/embed/viewer/default/train"
frameborder="0"
width="100%"
height="560px"
></iframe>
</div>
"""
html += "</div>"
return html
with gr.Blocks() as demo:
gr.Markdown("## 🤗 Dataset Search and Similarity")
with gr.Tabs():
with gr.TabItem("Similar Datasets"):
gr.Markdown("## 🤗 Dataset Similarity Search")
with gr.Row():
gr.Markdown(
"This Gradio app allows you to find similar datasets based on a given dataset ID or a text query. "
"Choose the search type and enter either a dataset ID or a text query to find similar datasets with previews of their dataset cards.\n\n"
"For a seamless experience on the Hugging Face website, check out the "
"[Hugging Face Similar Chrome extension](https://chromewebstore.google.com/detail/hugging-face-similar/aijelnjllajooinkcpkpbhckbghghpnl?authuser=0&hl=en). "
"This extension adds a 'Similar Datasets' section directly to Hugging Face dataset pages, "
"making it even easier to discover related datasets for your projects."
)
with gr.Row():
search_type = gr.Radio(
["Dataset ID", "Text Query"],
label="Search Type",
value="Dataset ID",
)
with gr.Row():
dataset_id = gr.Textbox(
value="airtrain-ai/fineweb-edu-fortified",
label="Dataset ID (e.g., airtrain-ai/fineweb-edu-fortified)",
)
text_query = gr.Textbox(
label="Text Query (e.g., 'natural language processing dataset')",
visible=False,
)
with gr.Row():
search_btn = gr.Button("Search Similar Datasets")
max_results = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=10,
label="Maximum number of results",
)
results = gr.Markdown()
def toggle_input_visibility(choice):
return gr.update(visible=choice == "Dataset ID"), gr.update(
visible=choice == "Text Query"
)
search_type.change(
toggle_input_visibility,
inputs=[search_type],
outputs=[dataset_id, text_query],
)
search_btn.click(
lambda search_type, dataset_id, text_query, limit: asyncio.run(
search_similar_datasets(dataset_id, limit)
if search_type == "Dataset ID"
else search_similar_datasets_by_text(text_query, limit)
),
inputs=[search_type, dataset_id, text_query, max_results],
outputs=results,
)
with gr.TabItem("RAGatouille Search"):
ragatouille_interface = create_ragatouille_interface()
with gr.TabItem("Search Viewer"):
gr.Markdown("## 🔍 Search Viewer")
with gr.Row():
gr.Markdown(
"This tab allows you to search for datasets using their dataset viewer preview! "
"Unlike the other search methods, this search utilizes the dataset viewer embedded in most datasets to match your query. "
"This means it doesn't rely on the dataset card for matching!\n\n"
"Enter a query to find relevant datasets and preview them directly using the dataset viewer.\n\n"
"Currently, this search is using a subset of datasets and a very early version of an embedding model to match natural language queries to datasets."
"**Help us improve!** Contribute to query quality improvement by participating in our "
"[Argilla annotation task](https://huggingface.co/spaces/davanstrien/my-argilla). Your feedback helps refine search results for everyone."
)
with gr.Row():
viewer_query = gr.Textbox(
label="Search Query", placeholder="Enter your search query here"
)
with gr.Row():
viewer_search_btn = gr.Button("Search")
viewer_max_results = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=10,
label="Maximum number of results",
)
viewer_results = gr.HTML()
viewer_search_btn.click(
lambda query, limit: asyncio.run(search_viewer(query, limit)),
inputs=[viewer_query, viewer_max_results],
outputs=viewer_results,
)
demo.launch()
|