File size: 5,562 Bytes
13dd954 84bfe38 dba982b 13dd954 47f28c5 dba982b 84bfe38 13dd954 84bfe38 47f28c5 24f13dd 13dd954 47f28c5 84bfe38 dba982b 84bfe38 13dd954 05ceda0 dba982b 13dd954 84bfe38 13dd954 dba982b 13dd954 05ceda0 13dd954 dba982b a937268 13dd954 dba982b 13dd954 84bfe38 dba982b 13dd954 dba982b 13dd954 dba982b 13dd954 dba982b 13dd954 2c755e0 13dd954 a937268 13dd954 a937268 13dd954 84bfe38 13dd954 84bfe38 dba982b 13dd954 dba982b 13dd954 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
from functools import lru_cache
from typing import Optional
import gradio as gr
from dotenv import load_dotenv
from qdrant_client import QdrantClient, models
from sentence_transformers import SentenceTransformer
from huggingface_hub import list_models
load_dotenv()
URL = os.getenv("QDRANT_URL")
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY")
sentence_embedding_model = SentenceTransformer("BAAI/bge-large-en")
print(URL)
print(QDRANT_API_KEY)
collection_name = "dataset_cards"
client = QdrantClient(
url=URL,
api_key=QDRANT_API_KEY,
)
# def convert_bytes_to_human_readable_size(bytes_size):
# if bytes_size < 1024**2:
# return f"{bytes_size / 1024:.2f} MB"
# elif bytes_size < 1024**3:
# return f"{bytes_size / (1024 ** 2):.2f} GB"
# else:
# return f"{bytes_size / (1024 ** 3):.2f} TB"
def format_time_nicely(time_str):
return time_str.split("T")[0]
def format_results(results, show_associated_models=True):
markdown = (
"<h1 style='text-align: center;'> ✨ Dataset Search Results ✨"
" </h1> \n\n"
)
for result in results:
hub_id = result.payload["id"]
download_number = result.payload["downloads"]
lastModified = result.payload["lastModified"]
url = f"https://huggingface.co/datasets/{hub_id}"
header = f"## [{hub_id}]({url})"
markdown += header + "\n"
markdown += f"**30 Day Downloads:** {download_number}"
if lastModified:
markdown += f" | **Last Modified:** {format_time_nicely(lastModified)} \n\n"
else:
markdown += "\n\n"
markdown += f"{result.payload['section_text']} \n"
if show_associated_models:
if linked_models := get_models_for_dataset(hub_id):
linked_models = [
f"[{model}](https://huggingface.co/{model})"
for model in linked_models
]
markdown += (
"<details><summary>Models trained on this dataset</summary>\n\n"
)
markdown += "- " + "\n- ".join(linked_models) + "\n\n"
markdown += "</details>\n\n"
return markdown
@lru_cache(maxsize=100_000)
def get_models_for_dataset(id):
results = list(iter(list_models(filter=f"dataset:{id}")))
if results:
results = list({result.id for result in results})
return results
@lru_cache(maxsize=200_000)
def search(query: str, limit: Optional[int] = 10, show_linked_models: bool = False):
query_ = sentence_embedding_model.encode(
f"Represent this sentence for searching relevant passages:{query}"
)
results = client.search(
collection_name="dataset_cards",
query_vector=query_,
limit=limit,
)
return format_results(results, show_associated_models=show_linked_models)
@lru_cache(maxsize=100_000)
def hub_id_qdrant_id(hub_id):
matches = client.scroll(
collection_name="dataset_cards",
scroll_filter=models.Filter(
must=[
models.FieldCondition(key="id", match=models.MatchValue(value=hub_id)),
]
),
limit=1,
with_payload=True,
with_vectors=False,
)
try:
return matches[0][0].id
except IndexError as e:
raise gr.Error(
f"Hub id {hub_id} not in the database. This could be because it is very new"
" or because it doesn't have much documentation."
) from e
@lru_cache()
def recommend(hub_id, limit: Optional[int] = 10, show_linked_models=False):
positive_id = hub_id_qdrant_id(hub_id)
results = client.recommend(
collection_name=collection_name, positive=[positive_id], limit=limit
)
return format_results(results, show_associated_models=show_linked_models)
def query(
search_term,
search_type,
limit: Optional[int] = 10,
show_linked_models: bool = False,
):
if search_type == "Recommend similar datasets":
return recommend(search_term, limit, show_linked_models)
else:
return search(search_term, limit, show_linked_models)
with gr.Blocks() as demo:
gr.Markdown("## 🤗 Semantic Dataset Search")
with gr.Row():
gr.Markdown(
"This Gradio app allows you to search for datasets based on their"
" descriptions. You can either search for similar datasets to a given"
" dataset or search for datasets based on a query."
)
with gr.Row():
search_term = gr.Textbox(
value="movie review sentiment",
label="hub id i.e. IMDB or query i.e. movie review sentiment",
)
with gr.Row():
with gr.Row():
find_similar_btn = gr.Button("Search")
search_type = gr.Radio(
["Recommend similar datasets", "Semantic Search"],
label="Search type",
value="Semantic Search",
interactive=True,
)
with gr.Column():
max_results = gr.Slider(
minimum=1,
maximum=50,
step=1,
value=10,
label="Maximum number of results",
)
show_linked_models = gr.Checkbox(
label="Show associated models",
default=False,
)
results = gr.Markdown()
find_similar_btn.click(
query, [search_term, search_type, max_results, show_linked_models], results
)
demo.launch()
|