leofltt's picture
Update app.py
fd6ca3f verified
raw
history blame
2.91 kB
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import pipeline
from transformers import BarkModel, BarkProcessor
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
SAMPLE_RATE = 16000
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# asr_model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-mustc-multilingual-st")
# asr_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-mustc-multilingual-st")
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
bark_model = BarkModel.from_pretrained("suno/bark")
bark_processor = BarkProcessor.from_pretrained("suno/bark")
def translate(audio):
# inputs = asr_processor(audio, sampling_rate=16000, return_tensors="pt")
# generated_ids = asr_model.generate(inputs["input_features"],attention_mask=inputs["attention_mask"],
# forced_bos_token_id=asr_processor.tokenizer.lang_code_to_id["it"],)
# translation = asr_processor.batch_decode(generated_ids, skip_special_tokens=True)
translation = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})
return translation["text"]
def synthesise(text):
inputs = bark_processor(text=text, voice_preset="v2/it_speaker_4",return_tensors="pt")
speech = bark_model.generate(**inputs, do_sample=True)
return speech
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return SAMPLE_RATE, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses Meta's [Speech2Text](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) model for speech translation, and Suno's
[Bark](https://huggingface.co/suno/bark) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()