Spaces:
Build error
Build error
# app.py | |
import os | |
import re | |
import gradio as gr | |
import requests | |
import pandas as pd | |
import logging | |
import numexpr | |
from typing import TypedDict, Annotated | |
# --- Langchain & HF Imports --- | |
# CHANGED: Swapped local pipeline for Inference API and removed torch | |
from langchain_huggingface import HuggingFaceInferenceAPI | |
from langchain_community.tools import DuckDuckGoSearchRun | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.tools import tool | |
from langgraph.graph import StateGraph, END | |
from langchain_community.document_loaders.youtube import YoutubeLoader | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# ADDED: A more robust prompt tailored for tool use with Llama 3 | |
SYSTEM_PROMPT = """You are a helpful and expert assistant named GAIA, designed to answer questions accurately. | |
To do this, you have access to a set of tools. Based on the user's question, you must decide which tool to use, if any. | |
Your process is: | |
1. **Analyze the Question**: Understand what is being asked. | |
2. **Select a Tool**: If necessary, choose the best tool for the job. Your available tools are: `web_search`, `math_calculator`, `image_analyzer`, `youtube_transcript_reader`. | |
3. **Call the Tool**: Output a tool call in the format `tool_name("argument")`. For example: `web_search("what is the weather in Paris?")`. | |
4. **Analyze the Result**: Look at the tool's output. | |
5. **Final Answer**: If you have enough information, provide the final answer. If not, you can use another tool. | |
When you have the final answer, you **must** output it in the following format, and nothing else: | |
FINAL ANSWER: [YOUR FINAL ANSWER] | |
- YOUR FINAL ANSWER should be a number, a short string, or a comma-separated list. | |
- Do not use formatting like thousands separators or units unless the question explicitly asks for it. | |
- Do not add explanations or prose in the final answer. | |
Example: | |
Question: What is the capital of France? | |
Your thought process: I need to find the capital of France. I will use the web search tool. | |
Tool call: web_search("capital of France") | |
Tool output: Paris is the capital of France. | |
Your final answer: FINAL ANSWER: Paris | |
""" | |
# --- Tool Definitions --- | |
# Global variable for lazy loading the image pipeline | |
image_to_text_pipeline = None | |
def web_search(query: str) -> str: | |
"""Searches the web using DuckDuckGo for up-to-date information.""" | |
logging.info(f"--- Calling Web Search Tool with query: {query} ---") | |
search = DuckDuckGoSearchRun() | |
return search.run(query) | |
def math_calculator(expression: str) -> str: | |
"""Calculates the result of a mathematical expression. Use it for any math operation.""" | |
logging.info(f"--- Calling Math Calculator Tool with expression: {expression} ---") | |
try: | |
# Sanitize expression: allow only numbers, basic operators, and parentheses | |
if not re.match(r"^[0-9\.\+\-\*\/\(\)\s]+$", expression): | |
return "Error: Invalid characters in expression." | |
result = numexpr.evaluate(expression).item() | |
return str(result) | |
except Exception as e: | |
logging.error(f"Calculator error: {e}") | |
return f"Error: {e}" | |
def image_analyzer(image_url: str) -> str: | |
"""Analyzes an image from a URL and returns a text description.""" | |
global image_to_text_pipeline | |
logging.info(f"--- Calling Image Analyzer Tool with URL: {image_url} ---") | |
try: | |
if image_to_text_pipeline is None: | |
logging.info( | |
"--- Initializing Image Analyzer pipeline (lazy loading)... ---" | |
) | |
# This pipeline is small enough to be loaded on demand in a ZeroGPU space | |
from transformers import pipeline | |
image_to_text_pipeline = pipeline( | |
"image-to-text", model="Salesforce/blip-image-captioning-base" | |
) | |
logging.info("--- Image Analyzer pipeline initialized. ---") | |
pipeline_output = image_to_text_pipeline(image_url) | |
if ( | |
pipeline_output | |
and isinstance(pipeline_output, list) | |
and len(pipeline_output) > 0 | |
): | |
description = pipeline_output[0].get( | |
"generated_text", "Error: Could not generate text." | |
) | |
else: | |
description = "Error: Could not analyze image." | |
return description | |
except Exception as e: | |
logging.error(f"Error analyzing image: {e}") | |
return f"Error analyzing image: {e}" | |
def youtube_transcript_reader(youtube_url: str) -> str: | |
"""Reads the transcript of a YouTube video from its URL.""" | |
logging.info( | |
f"--- Calling YouTube Transcript Reader Tool with URL: {youtube_url} ---" | |
) | |
try: | |
loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False) | |
docs = loader.load() | |
transcript = " ".join([doc.page_content for doc in docs]) | |
# Return a manageable chunk | |
return transcript[:4000] | |
except Exception as e: | |
logging.error(f"Error reading YouTube transcript: {e}") | |
return f"Error: {e}" | |
# --- Agent State Definition --- | |
class AgentState(TypedDict): | |
question: str | |
messages: Annotated[list, lambda x, y: x + y] | |
sender: str | |
# --- LangGraph Agent Definition --- | |
class GaiaAgent: | |
def __init__(self): | |
logging.info("Initializing GaiaAgent...") | |
self.tools = [ | |
web_search, | |
math_calculator, | |
image_analyzer, | |
youtube_transcript_reader, | |
] | |
# CHANGED: Replaced local HuggingFacePipeline with HuggingFaceInferenceAPI | |
# This uses the Hugging Face Serverless API, offloading the memory and compute. | |
# It requires a HUGGING_FACE_HUB_TOKEN to be set in the Space secrets. | |
logging.info("Initializing LLM via Inference API...") | |
llm = HuggingFaceInferenceAPI( | |
model_id="meta-llama/Meta-Llama-3-8B-Instruct", | |
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", # Use repo_id if model_id gives issues | |
task="text-generation", | |
token=os.getenv("HUGGING_FACE_HUB_TOKEN"), | |
) | |
logging.info("LLM initialized successfully.") | |
# Create the agent graph | |
prompt = PromptTemplate( | |
template=SYSTEM_PROMPT | |
+ "\nHere is the current conversation:\n{messages}\n\nQuestion: {question}", | |
input_variables=["messages", "question"], | |
) | |
self.agent = prompt | llm | StrOutputParser() | |
self.graph = self._create_graph() | |
logging.info("GaiaAgent initialized successfully.") | |
def _create_graph(self): | |
graph = StateGraph(AgentState) | |
graph.add_node("agent", self._call_agent) | |
graph.add_node("tools", self._call_tools) | |
graph.add_conditional_edges( | |
"agent", self._decide_action, {END: END, "tools": "tools"} | |
) | |
graph.add_edge("tools", "agent") | |
graph.set_entry_point("agent") | |
return graph.compile() | |
def _call_agent(self, state: AgentState): | |
logging.info("--- Calling Agent ---") | |
message_history = "\n".join(state["messages"]) | |
response = self.agent.invoke( | |
{"messages": message_history, "question": state["question"]} | |
) | |
return {"messages": [response], "sender": "agent"} | |
def _decide_action(self, state: AgentState): | |
logging.info("--- Deciding Action ---") | |
response = state["messages"][-1] | |
if "FINAL ANSWER:" in response: | |
return END | |
else: | |
return "tools" | |
def _call_tools(self, state: AgentState): | |
logging.info("--- Calling Tools ---") | |
raw_tool_call = state["messages"][-1] | |
tool_call_match = re.search(r"(\w+)\s*\((.*?)\)", raw_tool_call, re.DOTALL) | |
if not tool_call_match: | |
logging.warning("No valid tool call found in agent response.") | |
return { | |
"messages": [ | |
'No valid tool call found. Please format your response as `tool_name("argument")` or provide a `FINAL ANSWER:`.' | |
], | |
"sender": "tools", | |
} | |
tool_name = tool_call_match.group(1).strip() | |
tool_input_str = tool_call_match.group(2).strip() | |
# Remove quotes from the input string if they exist | |
if (tool_input_str.startswith('"') and tool_input_str.endswith('"')) or ( | |
tool_input_str.startswith("'") and tool_input_str.endswith("'") | |
): | |
tool_input = tool_input_str[1:-1] | |
else: | |
tool_input = tool_input_str | |
tool_to_call = next((t for t in self.tools if t.name == tool_name), None) | |
if tool_to_call: | |
try: | |
result = tool_to_call.run(tool_input) | |
return {"messages": [str(result)], "sender": "tools"} | |
except Exception as e: | |
logging.error(f"Error executing tool {tool_name}: {e}") | |
return { | |
"messages": [f"Error executing tool {tool_name}: {e}"], | |
"sender": "tools", | |
} | |
else: | |
logging.warning(f"Tool '{tool_name}' not found.") | |
return { | |
"messages": [ | |
f"Tool '{tool_name}' not found. Available tools are: web_search, math_calculator, image_analyzer, youtube_transcript_reader." | |
], | |
"sender": "tools", | |
} | |
def __call__(self, question: str) -> str: | |
logging.info(f"Agent received question (first 100 chars): {question[:100]}...") | |
try: | |
initial_state = {"question": question, "messages": [], "sender": "user"} | |
# Increased recursion limit for potentially complex questions | |
final_state = self.graph.invoke(initial_state, {"recursion_limit": 15}) | |
final_response = final_state["messages"][-1] | |
match = re.search( | |
r"FINAL ANSWER:\s*(.*)", final_response, re.IGNORECASE | re.DOTALL | |
) | |
if match: | |
extracted_answer = match.group(1).strip() | |
logging.info(f"Agent returning final answer: {extracted_answer}") | |
return extracted_answer | |
else: | |
logging.warning( | |
"Agent could not find a final answer. Returning the last message." | |
) | |
# Fallback: return the last piece of the conversation if parsing fails | |
return final_response | |
except Exception as e: | |
logging.error(f"Error during agent invocation: {e}", exc_info=True) | |
return f"Error during agent invocation: {e}" | |
# --- Gradio App Logic (largely unchanged, but with enhanced logging) --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the GaiaAgent on them, submits all answers, | |
and displays the results. | |
""" | |
if not profile: | |
logging.warning("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
username = profile.username | |
logging.info(f"User logged in: {username}") | |
space_id = os.getenv("SPACE_ID") | |
if not space_id: | |
logging.error("SPACE_ID environment variable is not set. Cannot proceed.") | |
return ( | |
"CRITICAL ERROR: SPACE_ID environment variable is not set. Cannot generate submission.", | |
None, | |
) | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = GaiaAgent() | |
except Exception as e: | |
logging.critical(f"Fatal error instantiating agent: {e}", exc_info=True) | |
return f"Fatal error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
logging.info(f"Agent code URL: {agent_code}") | |
# 2. Fetch Questions | |
logging.info(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=20) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
logging.warning("Fetched questions list is empty.") | |
return "Fetched questions list is empty.", None | |
logging.info(f"Fetched {len(questions_data)} questions.") | |
except Exception as e: | |
logging.error(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
logging.info(f"Running agent on {len(questions_data)} questions...") | |
for i, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
logging.info( | |
f"--- Processing question {i+1}/{len(questions_data)} (Task ID: {task_id}) ---" | |
) | |
if not task_id or question_text is None: | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append( | |
{"task_id": task_id, "submitted_answer": submitted_answer} | |
) | |
results_log.append( | |
{ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer, | |
} | |
) | |
except Exception as e: | |
logging.error(f"Error running agent on task {task_id}: {e}", exc_info=True) | |
results_log.append( | |
{ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}", | |
} | |
) | |
if not answers_payload: | |
logging.warning("Agent did not produce any answers.") | |
return "Agent did not produce any answers.", pd.DataFrame(results_log) | |
# 4. Prepare and Submit | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload, | |
} | |
logging.info(f"Submitting {len(answers_payload)} answers for user '{username}'...") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
logging.info("Submission successful.") | |
return final_status, pd.DataFrame(results_log) | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}. Detail: {e.response.text}" | |
logging.error(f"Submission Failed: {error_detail}") | |
return f"Submission Failed: {error_detail}", pd.DataFrame(results_log) | |
except Exception as e: | |
logging.critical( | |
f"An unexpected error occurred during submission: {e}", exc_info=True | |
) | |
return f"An unexpected error occurred during submission: {e}", pd.DataFrame( | |
results_log | |
) | |
# --- Build Gradio Interface (UI text is maintained as requested) --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# GAIA Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. This Space contains a `langgraph`-based agent equipped with tools for web search, math, image analysis, and YouTube transcript reading. | |
2. Log in to your Hugging Face account using the button below. Your HF username is used for the submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch the questions, run the agent, submit the answers, and see your score. | |
--- | |
**Disclaimer:** | |
Once you click the submit button, please be patient. The agent needs time to process all the questions, which can take several minutes. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox( | |
label="Run Status / Submission Result", lines=5, interactive=False | |
) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table], | |
api_name="run_evaluation", | |
) | |
if __name__ == "__main__": | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logging.info("App Starting...") | |
demo.launch(debug=True, share=False) | |