Spaces:
Build error
Build error
File size: 12,095 Bytes
2f87e44 f85ab70 10e9b7d ba6c035 10e9b7d eccf8e4 3c4371f 830c198 ba6c035 2f87e44 cc70c39 ba6c035 2f87e44 ba6c035 2f87e44 85d8289 e80aab9 3db6293 2f87e44 ba6c035 2ac3a83 ba6c035 2ac3a83 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 cc70c39 2f87e44 3c0542a cc70c39 7cfcba6 cc70c39 2f87e44 ba6c035 cc70c39 2f87e44 ba6c035 2ac3a83 ba6c035 2f87e44 2ac3a83 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 2ac3a83 ba6c035 2f87e44 ba6c035 2f87e44 ba6c035 2f87e44 4021bf3 b795696 2f87e44 ba6c035 2f87e44 2ac3a83 91b0aca 2ac3a83 830c198 cc70c39 2ac3a83 cc70c39 91b0aca cc70c39 91b0aca cc70c39 31243f4 ba6c035 31243f4 f85ab70 cc70c39 91b0aca eccf8e4 91b0aca 7d65c66 31243f4 f85ab70 85d8289 cc70c39 91b0aca cc70c39 7d65c66 91b0aca 31243f4 91b0aca 31243f4 91b0aca b795696 91b0aca b795696 31243f4 91b0aca b795696 91b0aca b795696 cc70c39 31243f4 91b0aca cc70c39 91b0aca e80aab9 91b0aca e80aab9 2f87e44 91b0aca 7d65c66 91b0aca e80aab9 2f87e44 e80aab9 ba6c035 7e4a06b 2f87e44 ba6c035 e80aab9 830c198 f85ab70 830c198 ba6c035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# app.py (Refactored for Improved Performance)
import os
import re
import gradio as gr
import requests
import pandas as pd
import logging
import numexpr
from typing import TypedDict, Annotated
# --- Langchain & HF Imports (Modern and Correct) ---
from langchain_huggingface import HuggingFaceEndpoint
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tools import tool
from langgraph.graph import StateGraph, END
from langgraph.errors import GraphRecursionError
from langchain_community.document_loaders.youtube import YoutubeLoader
from transformers import pipeline as hf_pipeline # Renamed to avoid conflict
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
### --- REFACTOR 1: A much stricter and more detailed System Prompt --- ###
SYSTEM_PROMPT = """You are GAIA, a powerful expert assistant. You are designed to answer questions accurately and efficiently by using a set of available tools.
**Your STRICT Process:**
1. **Analyze the User's Question:** Carefully determine the user's intent and what information is needed.
2. **Tool Selection and Execution:**
* **Is a tool necessary?**
* For questions about public information, facts, current events, statistics, people, companies, etc., you **MUST** use the `web_search` tool. Do not rely on your internal knowledge.
* If the question includes a URL pointing to an image (`.png`, `.jpg`, etc.), you **MUST** use the `image_analyzer` tool.
* If the question includes a YouTube URL, you **MUST** use the `youtube_transcript_reader` tool.
* If the question requires a calculation, you **MUST** use the `math_calculator` tool.
* If the question is a simple logic puzzle, riddle, or language task you can solve directly, you do not need a tool.
* **Tool Call Format:** To use a tool, you **MUST** respond with **only** the tool call on a single line. Do not add any other text or explanation.
* Example: `web_search("How many albums did Mercedes Sosa release after 2000?")`
3. **Analyze Tool Output:**
* Review the information returned by the tool.
* If you have enough information to answer the user's question, proceed to the final step.
* If you need more information, you may use another tool.
4. **Final Answer:**
* Once you have a definitive answer, you **MUST** format it as follows, and nothing else:
`FINAL ANSWER: [Your concise and accurate answer]`
"""
# --- Tool Definitions (Unchanged) ---
image_to_text_pipeline = None
@tool
def web_search(query: str) -> str:
"""Searches the web using DuckDuckGo for up-to-date information."""
logging.info(f"--- Calling Web Search Tool with query: {query} ---")
search = DuckDuckGoSearchRun()
return search.run(query)
@tool
def math_calculator(expression: str) -> str:
"""Calculates the result of a mathematical expression."""
logging.info(f"--- Calling Math Calculator Tool with expression: {expression} ---")
try:
if not re.match(r"^[0-9\.\+\-\*\/\(\)\s]+$", expression):
return "Error: Invalid characters in expression."
result = numexpr.evaluate(expression).item()
return str(result)
except Exception as e:
return f"Error: {e}"
@tool
def image_analyzer(image_url: str) -> str:
"""Analyzes an image from a URL and returns a text description."""
global image_to_text_pipeline
logging.info(f"--- Calling Image Analyzer Tool with URL: {image_url} ---")
try:
if image_to_text_pipeline is None:
logging.info("--- Initializing Image Analyzer pipeline... ---")
image_to_text_pipeline = hf_pipeline(
"image-to-text", model="Salesforce/blip-image-captioning-base"
)
description = image_to_text_pipeline(image_url)[0].get(
"generated_text", "Error"
)
return description
except Exception as e:
return f"Error analyzing image: {e}"
@tool
def youtube_transcript_reader(youtube_url: str) -> str:
"""Reads the transcript of a YouTube video from its URL."""
logging.info(f"--- Calling YouTube Transcript Reader with URL: {youtube_url} ---")
try:
loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
return " ".join([doc.page_content for doc in loader.load()])[:4000]
except Exception as e:
return f"Error reading YouTube transcript: {e}"
# --- Agent State & Graph (Unchanged) ---
class AgentState(TypedDict):
question: str
messages: Annotated[list, lambda x, y: x + y]
class GaiaAgent:
def __init__(self):
logging.info("Initializing GaiaAgent...")
self.tools = [
web_search,
math_calculator,
image_analyzer,
youtube_transcript_reader,
]
# IMPORTANT: Make sure you have accepted the terms of use for this model on the Hugging Face Hub!
logging.info("Initializing LLM...")
llm = HuggingFaceEndpoint(
repo_id="HuggingFaceH4/zephyr-7b-beta",
temperature=0.1,
max_new_tokens=1024,
huggingface_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
)
prompt = PromptTemplate.from_template(
SYSTEM_PROMPT + "\n{messages}\n\nQuestion: {question}"
)
self.agent = prompt | llm | StrOutputParser()
self.graph = self._create_graph()
logging.info("GaiaAgent initialized successfully.")
def _call_agent(self, state: AgentState):
logging.info("--- Calling Agent ---")
response = self.agent.invoke(state)
return {"messages": [response]}
def _call_tools(self, state: AgentState):
logging.info("--- Calling Tools ---")
raw_tool_call = state["messages"][-1]
tool_call_match = re.search(r"(\w+)\s*\((.*?)\)", raw_tool_call, re.DOTALL)
if not tool_call_match:
logging.warning("No valid tool call found in agent response.")
return {
"messages": [
"No valid tool call found. Please try again or provide a FINAL ANSWER."
]
}
tool_name = tool_call_match.group(1).strip()
tool_input_str = tool_call_match.group(2).strip().strip("'\"")
tool_to_call = next((t for t in self.tools if t.name == tool_name), None)
if tool_to_call:
try:
result = tool_to_call.run(tool_input_str)
return {"messages": [str(result)]}
except Exception as e:
return {"messages": [f"Error executing tool {tool_name}: {e}"]}
else:
return {
"messages": [
f"Tool '{tool_name}' not found. Available tools: web_search, math_calculator, image_analyzer, youtube_transcript_reader."
]
}
def _decide_action(self, state: AgentState):
return "tools" if "FINAL ANSWER:" not in state["messages"][-1] else END
def _create_graph(self):
graph = StateGraph(AgentState)
graph.add_node("agent", self._call_agent)
graph.add_node("tools", self._call_tools)
graph.add_conditional_edges(
"agent", self._decide_action, {"tools": "tools", END: END}
)
graph.add_edge("tools", "agent")
graph.set_entry_point("agent")
return graph.compile()
def __call__(self, question: str) -> str:
logging.info(f"Agent received question: {question[:100]}...")
try:
initial_state = {"question": question, "messages": []}
### --- REFACTOR 3: Gracefully handle recursion errors --- ###
final_state = self.graph.invoke(initial_state, {"recursion_limit": 15})
final_response = final_state["messages"][-1]
match = re.search(
r"FINAL ANSWER:\s*(.*)", final_response, re.IGNORECASE | re.DOTALL
)
return (
match.group(1).strip() if match else "Could not determine final answer."
)
except GraphRecursionError:
logging.error("Agent got stuck in a loop.")
return "Agent Error: Stuck in a loop."
except Exception as e:
logging.error(f"Error during agent invocation: {e}", exc_info=True)
return f"Error: {e}"
# --- Main Application Logic (Unchanged) ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
# This function is restored to run all questions.
# ... (The rest of this function and the Gradio UI code is the same as the last working version) ...
if not profile:
return "Please Login to Hugging Face.", None
username = profile.username
logging.info(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
if not space_id:
space_id = "leofltt/HF_Agents_Final_Assignment" # Your fallback
logging.warning(f"SPACE_ID not found, using fallback: {space_id}")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
agent = GaiaAgent()
except Exception as e:
return f"Fatal error initializing agent: {e}", None
logging.info("Fetching questions...")
try:
response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=20)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
logging.info(
f"FULL EVALUATION MODE: Processing all {len(questions_data)} questions..."
)
results_log = []
answers_payload = []
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
logging.info(
f"--- Processing question {i+1}/{len(questions_data)} (Task ID: {task_id}) ---"
)
try:
answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": answer,
}
)
except Exception as e:
error_message = f"AGENT ERROR on task {task_id}: {e}"
logging.error(error_message, exc_info=True)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": error_message,
}
)
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
logging.info(f"Submitting {len(answers_payload)} answers...")
try:
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload,
}
response = requests.post(
f"{DEFAULT_API_URL}/submit", json=submission_data, timeout=60
)
response.raise_for_status()
result_data = response.json()
status = f"Submission Successful!\nScore: {result_data.get('score', 'N/A')}%"
return status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface (Unchanged) ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Full Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Result", lines=4)
results_table = gr.DataFrame(label="Questions and Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
demo.launch()
|