Spaces:
Build error
Build error
File size: 13,362 Bytes
10e9b7d 2ac3a83 10e9b7d eccf8e4 3c4371f 4489283 2ac3a83 85d8289 e80aab9 3db6293 2ac3a83 b795696 2ac3a83 ec8845c 2ac3a83 ec8845c 2ac3a83 85d8289 2ac3a83 85d8289 2ac3a83 85d8289 2ac3a83 ec8845c 2ac3a83 ec8845c 2ac3a83 ec8845c 2ac3a83 97a46b7 2ac3a83 97a46b7 2ac3a83 97a46b7 2ac3a83 31243f4 2ac3a83 ec8845c 2ac3a83 b795696 2ac3a83 85d8289 2ac3a83 95afeec 31243f4 2ac3a83 7bb9df1 2ac3a83 4021bf3 b795696 2ac3a83 7d65c66 2ac3a83 7e4a06b 31243f4 2ac3a83 31243f4 2ac3a83 31243f4 2ac3a83 31243f4 2ac3a83 36ed51a 2ac3a83 eccf8e4 2ac3a83 7d65c66 31243f4 2ac3a83 85d8289 2ac3a83 7d65c66 3c4371f 31243f4 2ac3a83 31243f4 7d65c66 b795696 ec8845c b795696 ec8845c b795696 31243f4 2ac3a83 b795696 2ac3a83 31243f4 2ac3a83 b795696 2ac3a83 e80aab9 2ac3a83 e80aab9 31243f4 e80aab9 3c4371f e80aab9 2ac3a83 85d8289 2ac3a83 7d65c66 85d8289 e80aab9 2ac3a83 e80aab9 2ac3a83 0ee0419 e514fd7 97a46b7 2ac3a83 97a46b7 2ac3a83 e514fd7 e80aab9 2ac3a83 7e4a06b 2ac3a83 31243f4 b795696 7d65c66 2ac3a83 e80aab9 b795696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
import re
import gradio as gr
import requests
import pandas as pd
import torch
from transformers import pipeline
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFacePipeline
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tools import tool
from langgraph.graph import StateGraph, END
from typing import TypedDict, Annotated, List
from langchain_community.document_loaders.youtube import YoutubeLoader
import numexpr
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SYSTEM_PROMPT = """You are a helpful assistant tasked with answering questions.
You have access to a set of tools to help you. The question you receive may require you to use these tools.
When you receive a question, you should first think about what steps you need to take.
Based on your plan, you can then call the necessary tools.
After calling a tool, you will get a result. You should analyze the result and decide if you need to call another tool or if you have enough information to answer the question.
When you have the final answer, you must output it in the following format:
FINAL ANSWER: [YOUR FINAL ANSWER]
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
- If you are asked for a number, do not use commas for thousands separators or units like '$' or '%' unless specified.
- If you are asked for a string, do not use articles or abbreviations (e.g., for cities).
- If you are asked for a comma-separated list, apply the above rules to each element.
Example:
Question: What is the capital of France?
Your thought process: I need to find the capital of France. I will use the web search tool.
Tool call: web_search("capital of France")
Tool output: Paris is the capital of France.
Your final answer: FINAL ANSWER: Paris
"""
# --- Tool Definitions ---
@tool
def web_search(query: str):
"""Searches the web using DuckDuckGo."""
print(f"--- Calling Web Search Tool with query: {query} ---")
search = DuckDuckGoSearchRun()
return search.run(query)
@tool
def math_calculator(expression: str):
"""Calculates the result of a mathematical expression."""
print(f"--- Calling Math Calculator Tool with expression: {expression} ---")
try:
# Use numexpr for safe evaluation
result = numexpr.evaluate(expression).item()
return result
except Exception as e:
return f"Error evaluating expression: {e}"
@tool
def image_analyzer(image_url: str):
"""Analyzes an image and returns a description."""
print(f"--- Calling Image Analyzer Tool with URL: {image_url} ---")
try:
# Using a CPU-friendly image-to-text model
image_to_text = pipeline(
"image-to-text", model="Salesforce/blip-image-captioning-base"
)
description = image_to_text(image_url)[0]["generated_text"]
return description
except Exception as e:
return f"Error analyzing image: {e}"
@tool
def youtube_transcript_reader(youtube_url: str):
"""Reads the transcript of a YouTube video."""
print(f"--- Calling YouTube Transcript Reader Tool with URL: {youtube_url} ---")
try:
loader = YoutubeLoader.from_youtube_url(youtube_url, add_video_info=False)
docs = loader.load()
transcript = " ".join([doc.page_content for doc in docs])
# Return a manageable chunk of the transcript
return transcript[:4000]
except Exception as e:
return f"Error reading YouTube transcript: {e}"
# --- Agent State Definition ---
class AgentState(TypedDict):
question: str
messages: Annotated[list, lambda x, y: x + y]
sender: str
# --- LangGraph Agent Definition ---
class GaiaAgent:
def __init__(self):
print("Initializing GaiaAgent...")
self.tools = [
web_search,
math_calculator,
image_analyzer,
youtube_transcript_reader,
]
# Initialize the LLM
print("Loading LLM...")
llm = HuggingFacePipeline.from_model_id(
model_id="HuggingFaceH4/zephyr-7b-beta",
task="text-generation",
pipeline_kwargs={
"max_new_tokens": 512,
"top_k": 50,
"temperature": 0.1,
"do_sample": False,
"torch_dtype": torch.bfloat16,
"device_map": "auto",
},
)
print("LLM loaded.")
# Create the agent graph
prompt = PromptTemplate(
template=SYSTEM_PROMPT
+ """
Here is the current conversation:
{messages}
Question: {question}
""",
input_variables=["messages", "question"],
)
self.agent = prompt | llm | StrOutputParser()
self.graph = self._create_graph()
print("GaiaAgent initialized.")
def _create_graph(self):
graph = StateGraph(AgentState)
graph.add_node("agent", self._call_agent)
graph.add_node("tools", self._call_tools)
graph.add_conditional_edges(
"agent", self._decide_action, {"tools": "tools", END: END}
)
graph.add_edge("tools", "agent")
graph.set_entry_point("agent")
return graph.compile()
def _call_agent(self, state: AgentState):
print("--- Calling Agent ---")
message_history = "\n".join(state["messages"])
response = self.agent.invoke(
{"messages": message_history, "question": state["question"]}
)
return {"messages": [response], "sender": "agent"}
def _decide_action(self, state: AgentState):
print("--- Deciding Action ---")
response = state["messages"][-1]
if "FINAL ANSWER:" in response:
return END
else:
return "tools"
def _call_tools(self, state: AgentState):
print("--- Calling Tools ---")
raw_tool_call = state["messages"][-1]
# Simple regex to find tool calls like tool_name("argument")
tool_call_match = re.search(r"(\w+)\((.*?)\)", raw_tool_call)
if not tool_call_match:
return {"messages": ["No valid tool call found."], "sender": "tools"}
tool_name = tool_call_match.group(1).strip()
tool_input_str = tool_call_match.group(2).strip()
# Remove quotes from the input string if they exist
if tool_input_str.startswith('"') and tool_input_str.endswith('"'):
tool_input = tool_input_str[1:-1]
else:
tool_input = tool_input_str
tool_to_call = next((t for t in self.tools if t.name == tool_name), None)
if tool_to_call:
try:
result = tool_to_call.run(tool_input)
return {"messages": [str(result)], "sender": "tools"}
except Exception as e:
return {
"messages": [f"Error executing tool {tool_name}: {e}"],
"sender": "tools",
}
else:
return {"messages": [f"Tool '{tool_name}' not found."], "sender": "tools"}
def __call__(self, question: str) -> str:
print(f"Agent received question: {question[:100]}...")
initial_state = {"question": question, "messages": [], "sender": "user"}
final_state = self.graph.invoke(initial_state, {"recursion_limit": 10})
final_answer = final_state["messages"][-1]
# Extract the answer after "FINAL ANSWER:"
match = re.search(
r"FINAL ANSWER:\s*(.*)", final_answer, re.IGNORECASE | re.DOTALL
)
if match:
extracted_answer = match.group(1).strip()
print(f"Agent returning final answer: {extracted_answer}")
return extracted_answer
else:
print("Agent could not find a final answer in the required format.")
# Return a fallback answer if parsing fails
return "Could not determine the final answer."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GaiaAgent on them, submits all answers,
and displays the results.
"""
if not profile:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
username = profile.username
print(f"User logged in: {username}")
space_id = os.getenv("SPACE_ID")
if not space_id:
return "SPACE_ID environment variable is not set. Cannot proceed.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=20)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append(
{"task_id": task_id, "submitted_answer": submitted_answer}
)
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
}
)
if not answers_payload:
return "Agent did not produce any answers.", pd.DataFrame(results_log)
# 4. Prepare and Submit
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
return final_status, pd.DataFrame(results_log)
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}. Detail: {e.response.text}"
return f"Submission Failed: {error_detail}", pd.DataFrame(results_log)
except Exception as e:
return f"An unexpected error occurred during submission: {e}", pd.DataFrame(
results_log
)
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. This Space contains a `langgraph`-based agent equipped with tools for web search, math, image analysis, and YouTube transcript reading.
2. Log in to your Hugging Face account using the button below. Your HF username is used for the submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch the questions, run the agent, submit the answers, and see your score.
---
**Disclaimer:**
- Once you click the submit button, please be patient. The agent needs time to process all the questions, which can take several minutes depending on the model and hardware.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(
label="Run Status / Submission Result", lines=5, interactive=False
)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table],
api_name="run_evaluation",
)
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
demo.launch(debug=True, share=False)
|