Spaces:
Running
Running
| import torch | |
| import torch.nn.functional as F | |
| from dataclasses import dataclass | |
| import tiktoken | |
| import safetensors.torch | |
| tokenizer = tiktoken.get_encoding("gpt2") | |
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| # Define the GPTConfig dataclass | |
| class GPTConfig: | |
| vocab_size : int = 50304 | |
| n_layer : int = 12 | |
| n_head : int = 6 # head dim 128 suggested by @Grad62304977 | |
| n_embd : int = 768 | |
| # Define the Rotary class | |
| class Rotary(torch.nn.Module): | |
| def __init__(self, dim, base=10000): | |
| super().__init__() | |
| self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
| self.seq_len_cached = None | |
| self.cos_cached = None | |
| self.sin_cached = None | |
| def forward(self, x): | |
| seq_len = x.shape[1] | |
| if seq_len!= self.seq_len_cached: | |
| self.seq_len_cached = seq_len | |
| t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) | |
| freqs = torch.outer(t, self.inv_freq).to(x.device) | |
| self.cos_cached = freqs.cos().bfloat16() | |
| self.sin_cached = freqs.sin().bfloat16() | |
| return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] | |
| def apply_rotary_emb(x, cos, sin): | |
| assert x.ndim == 4 # multihead attention | |
| d = x.shape[3]//2 | |
| x1 = x[..., :d] | |
| x2 = x[..., d:] | |
| y1 = x1 * cos + x2 * sin | |
| y2 = x1 * (-sin) + x2 * cos | |
| return torch.cat([y1, y2], 3).type_as(x) | |
| # Define the CausalSelfAttention class | |
| class CausalSelfAttention(torch.nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.head_dim = self.n_embd // self.n_head | |
| assert self.n_embd % self.n_head == 0 | |
| self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) | |
| self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) | |
| self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) | |
| # output projection | |
| self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) | |
| self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 | |
| self.rotary = Rotary(self.head_dim) | |
| self.lamb = torch.nn.Parameter(torch.tensor(0.5)) # @Grad62304977 | |
| def forward(self, x, v1=None): | |
| B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) | |
| q = self.c_q(x).view(B, T, self.n_head, self.head_dim) | |
| k = self.c_k(x).view(B, T, self.n_head, self.head_dim) | |
| v = self.c_v(x).view(B, T, self.n_head, self.head_dim) | |
| if v1 is None: | |
| v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks | |
| v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977 | |
| cos, sin = self.rotary(q) | |
| q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977 | |
| q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) | |
| y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True) | |
| y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side | |
| y = self.c_proj(y) | |
| return y, v1 | |
| # Define the MLP class | |
| class MLP(torch.nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) | |
| self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False) | |
| self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 | |
| def forward(self, x): | |
| x = self.c_fc(x) | |
| x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 | |
| x = self.c_proj(x) | |
| return x | |
| # Define the Block class | |
| class Block(torch.nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.attn = CausalSelfAttention(config) | |
| self.mlp = MLP(config) | |
| self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.])) | |
| def forward(self, x, v1, x0): | |
| x = self.lambdas[0] * x + self.lambdas[1] * x0 | |
| x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1) | |
| x = x + x1 | |
| x = x + self.mlp(F.rms_norm(x, (x.size(-1),))) | |
| return x, v1 | |
| # Define the GPT class | |
| class GPT(torch.nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = torch.nn.ModuleDict(dict( | |
| wte = torch.nn.Embedding(config.vocab_size, config.n_embd), | |
| h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| )) | |
| self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.lm_head.weight.data.zero_() # @Grad62304977 | |
| def forward(self, idx, targets=None, return_logits=True): | |
| # forward the GPT model itself | |
| x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) | |
| x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977 | |
| x0 = x | |
| v1 = None | |
| for block in self.transformer.h: | |
| x, v1 = block(x, v1, x0) | |
| x = F.rms_norm(x, (x.size(-1),)) | |
| if targets is not None: | |
| # if we are given some desired targets also calculate the loss | |
| logits = self.lm_head(x) | |
| logits = 30 * torch.tanh(logits / 30) # @Grad62304977 | |
| logits = logits.float() # use tf32/fp32 for logits | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) | |
| else: | |
| # inference-time mini-optimization: only forward the lm_head on the very last position | |
| logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim | |
| logits = 30 * torch.tanh(logits / 30) # @Grad62304977 | |
| logits = logits.float() # use tf32/fp32 for logits | |
| loss = None | |
| # there are performance reasons why not returning logits is prudent, if not needed | |
| if not return_logits: | |
| logits = None | |
| return logits, loss | |
| def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): | |
| """ | |
| Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete | |
| the sequence max_new_tokens times, feeding the predictions back into the model each time. | |
| Most likely you'll want to make sure to be in model.eval() mode of operation for this. | |
| """ | |
| for _ in range(max_new_tokens): | |
| # if the sequence context is growing too long we must crop it at block_size | |
| #idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] | |
| # forward the model to get the logits for the index in the sequence | |
| logits, _ = self(idx) | |
| # pluck the logits at the final step and scale by desired temperature | |
| logits = logits[:, -1, :] / temperature | |
| # optionally crop the logits to only the top k options | |
| if top_k is not None: | |
| v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
| logits[logits < v[:, [-1]]] = -float('Inf') | |
| # apply softmax to convert logits to (normalized) probabilities | |
| probs = F.softmax(logits, dim=-1) | |
| # sample from the distribution | |
| idx_next = torch.multinomial(probs, num_samples=1) | |
| # append sampled index to the running sequence and continue | |
| idx = torch.cat((idx, idx_next), dim=1) | |
| return idx | |
| # Run LLM inference | |
| def run_inference(model, input_ids, max_new_tokens, temperature): | |
| input_ids = torch.tensor(input_ids).unsqueeze(0) | |
| return model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature) | |
| # Main function | |
| def load_model(): | |
| config = GPTConfig() | |
| model = GPT(config) | |
| model_path = 'nanogpt-speedrun-baseline.safetensors' # replace with your checkpoint path | |
| hf_path = hf_hub_download("lemonteaa/nanogpt-speedrun", model_path) | |
| missing, unexpected = safetensors.torch.load_model(model, hf_path) | |
| model.eval() | |
| return model | |
| nanogpt_model = load_model() | |
| def text_complete(prompt, max_new_tokens, temperature): | |
| input_ids = tokenizer.encode_ordinary(prompt) | |
| output_ids = run_inference(nanogpt_model, input_ids, max_new_tokens, temperature) | |
| tmp = output_ids.squeeze().tolist() | |
| return tokenizer.decode(tmp) | |
| desc = """*Note*: This is a base model, so you do raw text completion with it. | |
| Model arch is customized GPT2 small (124M) trained to reproduce [the speedrun](https://github.com/KellerJordan/modded-nanogpt), see also [this](https://github.com/karpathy/llm.c/discussions/481). | |
| Model repo is [here](https://huggingface.co/lemonteaa/nanogpt-speedrun). | |
| """ | |
| demo = gr.Interface( | |
| title="NanoGPT Speedrun Baseline Model Inference Demo", | |
| description=desc, | |
| fn=text_complete, | |
| inputs=[ | |
| gr.Text(label="Prompt"), | |
| gr.Slider(label="max new tokens", minimum=10, maximum=500, value=100, step=1), | |
| gr.Slider(label="temperature", minimum=0.0, maximum=2.0, value=0.9, step=0.1) | |
| ], | |
| outputs=["text"], | |
| examples=[["Once upon a time, "], ["A quick and delicious recipe for pancake: "], ["The role of IT in supply chain is "]] | |
| ) | |
| demo.queue() | |
| demo.launch() | |