Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
|
| 5 |
+
import tiktoken
|
| 6 |
+
|
| 7 |
+
import safetensors.torch
|
| 8 |
+
|
| 9 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
| 10 |
+
|
| 11 |
+
import gradio as gr
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
# Define the GPTConfig dataclass
|
| 15 |
+
@dataclass
|
| 16 |
+
class GPTConfig:
|
| 17 |
+
vocab_size : int = 50304
|
| 18 |
+
n_layer : int = 12
|
| 19 |
+
n_head : int = 6 # head dim 128 suggested by @Grad62304977
|
| 20 |
+
n_embd : int = 768
|
| 21 |
+
|
| 22 |
+
# Define the Rotary class
|
| 23 |
+
class Rotary(torch.nn.Module):
|
| 24 |
+
|
| 25 |
+
def __init__(self, dim, base=10000):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 28 |
+
self.seq_len_cached = None
|
| 29 |
+
self.cos_cached = None
|
| 30 |
+
self.sin_cached = None
|
| 31 |
+
|
| 32 |
+
def forward(self, x):
|
| 33 |
+
seq_len = x.shape[1]
|
| 34 |
+
if seq_len!= self.seq_len_cached:
|
| 35 |
+
self.seq_len_cached = seq_len
|
| 36 |
+
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
| 37 |
+
freqs = torch.outer(t, self.inv_freq).to(x.device)
|
| 38 |
+
self.cos_cached = freqs.cos().bfloat16()
|
| 39 |
+
self.sin_cached = freqs.sin().bfloat16()
|
| 40 |
+
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]
|
| 41 |
+
|
| 42 |
+
def apply_rotary_emb(x, cos, sin):
|
| 43 |
+
assert x.ndim == 4 # multihead attention
|
| 44 |
+
d = x.shape[3]//2
|
| 45 |
+
x1 = x[..., :d]
|
| 46 |
+
x2 = x[..., d:]
|
| 47 |
+
y1 = x1 * cos + x2 * sin
|
| 48 |
+
y2 = x1 * (-sin) + x2 * cos
|
| 49 |
+
return torch.cat([y1, y2], 3).type_as(x)
|
| 50 |
+
|
| 51 |
+
# Define the CausalSelfAttention class
|
| 52 |
+
class CausalSelfAttention(torch.nn.Module):
|
| 53 |
+
|
| 54 |
+
def __init__(self, config):
|
| 55 |
+
super().__init__()
|
| 56 |
+
self.n_head = config.n_head
|
| 57 |
+
self.n_embd = config.n_embd
|
| 58 |
+
self.head_dim = self.n_embd // self.n_head
|
| 59 |
+
assert self.n_embd % self.n_head == 0
|
| 60 |
+
self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
|
| 61 |
+
self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
|
| 62 |
+
self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
|
| 63 |
+
# output projection
|
| 64 |
+
self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
|
| 65 |
+
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
|
| 66 |
+
self.rotary = Rotary(self.head_dim)
|
| 67 |
+
self.lamb = torch.nn.Parameter(torch.tensor(0.5)) # @Grad62304977
|
| 68 |
+
|
| 69 |
+
def forward(self, x, v1=None):
|
| 70 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
| 71 |
+
q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
|
| 72 |
+
k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
|
| 73 |
+
v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
|
| 74 |
+
if v1 is None:
|
| 75 |
+
v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
|
| 76 |
+
v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
|
| 77 |
+
cos, sin = self.rotary(q)
|
| 78 |
+
q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
|
| 79 |
+
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
|
| 80 |
+
y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True)
|
| 81 |
+
y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
|
| 82 |
+
y = self.c_proj(y)
|
| 83 |
+
return y, v1
|
| 84 |
+
|
| 85 |
+
# Define the MLP class
|
| 86 |
+
class MLP(torch.nn.Module):
|
| 87 |
+
|
| 88 |
+
def __init__(self, config):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
|
| 91 |
+
self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
|
| 92 |
+
self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
x = self.c_fc(x)
|
| 96 |
+
x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
|
| 97 |
+
x = self.c_proj(x)
|
| 98 |
+
return x
|
| 99 |
+
|
| 100 |
+
# Define the Block class
|
| 101 |
+
class Block(torch.nn.Module):
|
| 102 |
+
|
| 103 |
+
def __init__(self, config):
|
| 104 |
+
super().__init__()
|
| 105 |
+
self.attn = CausalSelfAttention(config)
|
| 106 |
+
self.mlp = MLP(config)
|
| 107 |
+
self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.]))
|
| 108 |
+
|
| 109 |
+
def forward(self, x, v1, x0):
|
| 110 |
+
x = self.lambdas[0] * x + self.lambdas[1] * x0
|
| 111 |
+
x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1)
|
| 112 |
+
x = x + x1
|
| 113 |
+
x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
|
| 114 |
+
return x, v1
|
| 115 |
+
|
| 116 |
+
# Define the GPT class
|
| 117 |
+
class GPT(torch.nn.Module):
|
| 118 |
+
|
| 119 |
+
def __init__(self, config):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.config = config
|
| 122 |
+
|
| 123 |
+
self.transformer = torch.nn.ModuleDict(dict(
|
| 124 |
+
wte = torch.nn.Embedding(config.vocab_size, config.n_embd),
|
| 125 |
+
h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
| 126 |
+
))
|
| 127 |
+
self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 128 |
+
self.lm_head.weight.data.zero_() # @Grad62304977
|
| 129 |
+
|
| 130 |
+
def forward(self, idx, targets=None, return_logits=True):
|
| 131 |
+
|
| 132 |
+
# forward the GPT model itself
|
| 133 |
+
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
| 134 |
+
x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
|
| 135 |
+
x0 = x
|
| 136 |
+
v1 = None
|
| 137 |
+
for block in self.transformer.h:
|
| 138 |
+
x, v1 = block(x, v1, x0)
|
| 139 |
+
x = F.rms_norm(x, (x.size(-1),))
|
| 140 |
+
|
| 141 |
+
if targets is not None:
|
| 142 |
+
# if we are given some desired targets also calculate the loss
|
| 143 |
+
logits = self.lm_head(x)
|
| 144 |
+
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
|
| 145 |
+
logits = logits.float() # use tf32/fp32 for logits
|
| 146 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
| 147 |
+
else:
|
| 148 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
| 149 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
| 150 |
+
logits = 30 * torch.tanh(logits / 30) # @Grad62304977
|
| 151 |
+
logits = logits.float() # use tf32/fp32 for logits
|
| 152 |
+
loss = None
|
| 153 |
+
|
| 154 |
+
# there are performance reasons why not returning logits is prudent, if not needed
|
| 155 |
+
if not return_logits:
|
| 156 |
+
logits = None
|
| 157 |
+
|
| 158 |
+
return logits, loss
|
| 159 |
+
|
| 160 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
| 161 |
+
"""
|
| 162 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
| 163 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
| 164 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
| 165 |
+
"""
|
| 166 |
+
for _ in range(max_new_tokens):
|
| 167 |
+
# if the sequence context is growing too long we must crop it at block_size
|
| 168 |
+
#idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
| 169 |
+
# forward the model to get the logits for the index in the sequence
|
| 170 |
+
logits, _ = self(idx)
|
| 171 |
+
# pluck the logits at the final step and scale by desired temperature
|
| 172 |
+
logits = logits[:, -1, :] / temperature
|
| 173 |
+
# optionally crop the logits to only the top k options
|
| 174 |
+
if top_k is not None:
|
| 175 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 176 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
| 177 |
+
# apply softmax to convert logits to (normalized) probabilities
|
| 178 |
+
probs = F.softmax(logits, dim=-1)
|
| 179 |
+
# sample from the distribution
|
| 180 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 181 |
+
# append sampled index to the running sequence and continue
|
| 182 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 183 |
+
|
| 184 |
+
return idx
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# Run LLM inference
|
| 188 |
+
def run_inference(model, input_ids, max_new_tokens, temperature):
|
| 189 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
| 190 |
+
return model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature)
|
| 191 |
+
|
| 192 |
+
# Main function
|
| 193 |
+
def load_model():
|
| 194 |
+
config = GPTConfig()
|
| 195 |
+
model = GPT(config)
|
| 196 |
+
model_path = 'nanogpt-speedrun-baseline.safetensors' # replace with your checkpoint path
|
| 197 |
+
hf_path = hf_hub_download("lemonteaa/nanogpt-speedrun", model_path)
|
| 198 |
+
missing, unexpected = safetensors.torch.load_model(model, hf_path)
|
| 199 |
+
model.eval()
|
| 200 |
+
return model
|
| 201 |
+
|
| 202 |
+
nanogpt_model = load_model()
|
| 203 |
+
|
| 204 |
+
def text_complete(prompt, max_new_tokens, temperature):
|
| 205 |
+
input_ids = tokenizer.encode_ordinary(prompt)
|
| 206 |
+
output_ids = run_inference(nanogpt_model, input_ids, max_new_tokens, temperature)
|
| 207 |
+
tmp = output_ids.squeeze().tolist()
|
| 208 |
+
return tokenizer.decode(tmp)
|
| 209 |
+
|
| 210 |
+
desc = """*Note*: This is a base model, so you do raw text completion with it.
|
| 211 |
+
|
| 212 |
+
Model arch is customized GPT2 small (124M) trained to reproduce [the speedrun](https://github.com/KellerJordan/modded-nanogpt), see also [this](https://github.com/karpathy/llm.c/discussions/481).
|
| 213 |
+
|
| 214 |
+
Model repo is [here](https://huggingface.co/lemonteaa/nanogpt-speedrun).
|
| 215 |
+
"""
|
| 216 |
+
|
| 217 |
+
demo = gr.Interface(
|
| 218 |
+
title="NanoGPT Speedrun Baseline Model Inference Demo",
|
| 219 |
+
description=desc,
|
| 220 |
+
fn=text_complete,
|
| 221 |
+
inputs=[
|
| 222 |
+
gr.Text(label="Prompt"),
|
| 223 |
+
gr.Slider(label="max new tokens", minimum=10, maximum=500, value=100, step=1),
|
| 224 |
+
gr.Slider(label="temperature", minimum=0.0, maximum=2.0, value=0.9, step=0.1)
|
| 225 |
+
],
|
| 226 |
+
outputs=["text"],
|
| 227 |
+
examples=[["Once upon a time, "], ["A quick and delicious recipe for pancake: "], ["The role of IT in supply chain is "]]
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
demo.queue()
|
| 231 |
+
demo.launch()
|