TranSVAE / app.py
ldkong's picture
Update app.py
3c3a705
raw
history blame
24.2 kB
import gradio as gr
import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
class RelationModuleMultiScale(torch.nn.Module):
def __init__(self, img_feature_dim, num_bottleneck, num_frames):
super(RelationModuleMultiScale, self).__init__()
self.subsample_num = 3
self.img_feature_dim = img_feature_dim
self.scales = [i for i in range(num_frames, 1, -1)]
self.relations_scales = []
self.subsample_scales = []
for scale in self.scales:
relations_scale = self.return_relationset(num_frames, scale)
self.relations_scales.append(relations_scale)
self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
self.num_frames = num_frames
self.fc_fusion_scales = nn.ModuleList()
for i in range(len(self.scales)):
scale = self.scales[i]
fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
self.fc_fusion_scales += [fc_fusion]
def forward(self, input):
act_scale_1 = input[:, self.relations_scales[0][0] , :]
act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
act_scale_1 = act_scale_1.unsqueeze(1)
act_all = act_scale_1.clone()
for scaleID in range(1, len(self.scales)):
act_relation_all = torch.zeros_like(act_scale_1)
num_total_relations = len(self.relations_scales[scaleID])
num_select_relations = self.subsample_scales[scaleID]
idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
for idx in idx_relations_evensample:
act_relation = input[:, self.relations_scales[scaleID][idx], :]
act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
act_relation = self.fc_fusion_scales[scaleID](act_relation)
act_relation = act_relation.unsqueeze(1)
act_relation_all += act_relation
act_all = torch.cat((act_all, act_relation_all), 1)
return act_all
def return_relationset(self, num_frames, num_frames_relation):
import itertools
return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))
class GradReverse(Function):
@staticmethod
def forward(ctx, x, beta):
ctx.beta = beta
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
grad_input = grad_output.neg() * ctx.beta
return grad_input, None
class TransferVAE_Video(nn.Module):
def __init__(self):
super(TransferVAE_Video, self).__init__()
self.f_dim = 512
self.z_dim = 512
self.fc_dim = 1024
self.channels = 3
self.frames = 8
self.batch_size = 128
self.dropout_rate = 0.5
self.num_class = 15
self.prior_sample = 'random'
import dcgan_64
self.encoder = dcgan_64.encoder(self.fc_dim, self.channels)
self.decoder = dcgan_64.decoder_woSkip(self.z_dim + self.f_dim, self.channels)
self.fc_output_dim = self.fc_dim
self.relu = nn.LeakyReLU(0.1)
self.dropout_f = nn.Dropout(p=self.dropout_rate)
self.dropout_v = nn.Dropout(p=self.dropout_rate)
self.hidden_dim = 512
self.f_rnn_layers = 1
self.z_prior_lstm_ly1 = nn.LSTMCell(self.z_dim, self.hidden_dim)
self.z_prior_lstm_ly2 = nn.LSTMCell(self.hidden_dim, self.hidden_dim)
self.z_prior_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_prior_logvar = nn.Linear(self.hidden_dim, self.z_dim)
self.z_lstm = nn.LSTM(self.fc_output_dim, self.hidden_dim, self.f_rnn_layers, bidirectional=True, batch_first=True)
self.f_mean = nn.Linear(self.hidden_dim * 2, self.f_dim)
self.f_logvar = nn.Linear(self.hidden_dim * 2, self.f_dim)
self.z_rnn = nn.RNN(self.hidden_dim * 2, self.hidden_dim, batch_first=True)
self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
self.fc_feature_domain_frame = nn.Linear(self.z_dim, self.z_dim)
self.fc_classifier_domain_frame = nn.Linear(self.z_dim, 2)
self.num_bottleneck = 256
self.TRN = RelationModuleMultiScale(self.z_dim, self.num_bottleneck, self.frames)
self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
self.feat_aggregated_dim = self.num_bottleneck
self.fc_feature_domain_video = nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim)
self.fc_classifier_domain_video = nn.Linear(self.feat_aggregated_dim, 2)
self.relation_domain_classifier_all = nn.ModuleList()
for i in range(self.frames-1):
relation_domain_classifier = nn.Sequential(
nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
nn.ReLU(),
nn.Linear(self.feat_aggregated_dim, 2)
)
self.relation_domain_classifier_all += [relation_domain_classifier]
self.pred_classifier_video = nn.Linear(self.feat_aggregated_dim, self.num_class)
self.fc_feature_domain_latent = nn.Linear(self.f_dim, self.f_dim)
self.fc_classifier_doamin_latent = nn.Linear(self.f_dim, 2)
def domain_classifier_frame(self, feat, beta):
feat_fc_domain_frame = GradReverse.apply(feat, beta)
feat_fc_domain_frame = self.fc_feature_domain_frame(feat_fc_domain_frame)
feat_fc_domain_frame = self.relu(feat_fc_domain_frame)
pred_fc_domain_frame = self.fc_classifier_domain_frame(feat_fc_domain_frame)
return pred_fc_domain_frame
def domain_classifier_video(self, feat_video, beta):
feat_fc_domain_video = GradReverse.apply(feat_video, beta)
feat_fc_domain_video = self.fc_feature_domain_video(feat_fc_domain_video)
feat_fc_domain_video = self.relu(feat_fc_domain_video)
pred_fc_domain_video = self.fc_classifier_domain_video(feat_fc_domain_video)
return pred_fc_domain_video
def domain_classifier_latent(self, f):
feat_fc_domain_latent = self.fc_feature_domain_latent(f)
feat_fc_domain_latent = self.relu(feat_fc_domain_latent)
pred_fc_domain_latent = self.fc_classifier_doamin_latent(feat_fc_domain_latent)
return pred_fc_domain_latent
def domain_classifier_relation(self, feat_relation, beta):
pred_fc_domain_relation_video = None
for i in range(len(self.relation_domain_classifier_all)):
feat_relation_single = feat_relation[:,i,:].squeeze(1)
feat_fc_domain_relation_single = GradReverse.apply(feat_relation_single, beta)
pred_fc_domain_relation_single = self.relation_domain_classifier_all[i](feat_fc_domain_relation_single)
if pred_fc_domain_relation_video is None:
pred_fc_domain_relation_video = pred_fc_domain_relation_single.view(-1,1,2)
else:
pred_fc_domain_relation_video = torch.cat((pred_fc_domain_relation_video, pred_fc_domain_relation_single.view(-1,1,2)), 1)
pred_fc_domain_relation_video = pred_fc_domain_relation_video.view(-1,2)
return pred_fc_domain_relation_video
def get_trans_attn(self, pred_domain):
softmax = nn.Softmax(dim=1)
logsoftmax = nn.LogSoftmax(dim=1)
entropy = torch.sum(-softmax(pred_domain) * logsoftmax(pred_domain), 1)
weights = 1 - entropy
return weights
def get_general_attn(self, feat):
num_segments = feat.size()[1]
feat = feat.view(-1, feat.size()[-1]) # reshape features: 128x4x256 --> (128x4)x256
weights = self.attn_layer(feat) # e.g. (128x4)x1
weights = weights.view(-1, num_segments, weights.size()[-1]) # reshape attention weights: (128x4)x1 --> 128x4x1
weights = F.softmax(weights, dim=1) # softmax over segments ==> 128x4x1
return weights
def get_attn_feat_relation(self, feat_fc, pred_domain, num_segments):
weights_attn = self.get_trans_attn(pred_domain)
weights_attn = weights_attn.view(-1, num_segments-1, 1).repeat(1,1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 4 x 256)
feat_fc_attn = (weights_attn+1) * feat_fc
return feat_fc_attn, weights_attn[:,:,0]
def encode_and_sample_post(self, x):
if isinstance(x, list):
conv_x = self.encoder_frame(x[0])
else:
conv_x = self.encoder_frame(x)
# pass the bidirectional lstm
lstm_out, _ = self.z_lstm(conv_x)
# get f:
backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
lstm_out_f = torch.cat((frontal, backward), dim=1)
f_mean = self.f_mean(lstm_out_f)
f_logvar = self.f_logvar(lstm_out_f)
f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
# pass to one direction rnn
features, _ = self.z_rnn(lstm_out)
z_mean = self.z_mean(features)
z_logvar = self.z_logvar(features)
z_post = self.reparameterize(z_mean, z_logvar, random_sampling=False)
if isinstance(x, list):
f_mean_list = [f_mean]
f_post_list = [f_post]
for t in range(1,3,1):
conv_x = self.encoder_frame(x[t])
lstm_out, _ = self.z_lstm(conv_x)
# get f:
backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
lstm_out_f = torch.cat((frontal, backward), dim=1)
f_mean = self.f_mean(lstm_out_f)
f_logvar = self.f_logvar(lstm_out_f)
f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
f_mean_list.append(f_mean)
f_post_list.append(f_post)
f_mean = f_mean_list
f_post = f_post_list
# f_mean and f_post are list if triple else not
return f_mean, f_logvar, f_post, z_mean, z_logvar, z_post
def decoder_frame(self,zf):
recon_x = self.decoder(zf)
return recon_x
def encoder_frame(self, x):
x_shape = x.shape
x = x.view(-1, x_shape[-3], x_shape[-2], x_shape[-1])
x_embed = self.encoder(x)[0]
return x_embed.view(x_shape[0], x_shape[1], -1)
def reparameterize(self, mean, logvar, random_sampling=True):
# Reparametrization occurs only if random sampling is set to true, otherwise mean is returned
if random_sampling is True:
eps = torch.randn_like(logvar)
std = torch.exp(0.5 * logvar)
z = mean + eps * std
return z
else:
return mean
def sample_z_prior_train(self, z_post, random_sampling=True):
z_out = None
z_means = None
z_logvars = None
batch_size = z_post.shape[0]
z_t = torch.zeros(batch_size, self.z_dim).cpu()
h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
for i in range(self.frames):
# two layer LSTM and two one-layer FC
h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))
z_mean_t = self.z_prior_mean(h_t_ly2)
z_logvar_t = self.z_prior_logvar(h_t_ly2)
z_prior = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
if z_out is None:
# If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
z_out = z_prior.unsqueeze(1)
z_means = z_mean_t.unsqueeze(1)
z_logvars = z_logvar_t.unsqueeze(1)
else:
# If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
z_out = torch.cat((z_out, z_prior.unsqueeze(1)), dim=1)
z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
z_t = z_post[:,i,:]
return z_means, z_logvars, z_out
# If random sampling is true, reparametrization occurs else z_t is just set to the mean
def sample_z(self, batch_size, random_sampling=True):
z_out = None # This will ultimately store all z_s in the format [batch_size, frames, z_dim]
z_means = None
z_logvars = None
# All states are initially set to 0, especially z_0 = 0
z_t = torch.zeros(batch_size, self.z_dim).cpu()
# z_mean_t = torch.zeros(batch_size, self.z_dim)
# z_logvar_t = torch.zeros(batch_size, self.z_dim)
h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
for _ in range(self.frames):
# h_t, c_t = self.z_prior_lstm(z_t, (h_t, c_t))
# two layer LSTM and two one-layer FC
h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))
z_mean_t = self.z_prior_mean(h_t_ly2)
z_logvar_t = self.z_prior_logvar(h_t_ly2)
z_t = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
if z_out is None:
# If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
z_out = z_t.unsqueeze(1)
z_means = z_mean_t.unsqueeze(1)
z_logvars = z_logvar_t.unsqueeze(1)
else:
# If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
z_out = torch.cat((z_out, z_t.unsqueeze(1)), dim=1)
z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
return z_means, z_logvars, z_out
def forward(self, x, beta):
_, _, f_post, _, _, z_post = self.encode_and_sample_post(x)
if isinstance(f_post, list):
f_expand = f_post[0].unsqueeze(1).expand(-1, self.frames, self.f_dim)
else:
f_expand = f_post.unsqueeze(1).expand(-1, self.frames, self.f_dim)
zf = torch.cat((z_post, f_expand), dim=2)
recon_x = self.decoder_frame(zf)
return f_post, z_post, recon_x
def name2seq(file_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
images.append(image[:, :, :3])
images = np.asarray(images, dtype='f') / 256.0
images = images.transpose((0, 3, 1, 2))
images = torch.Tensor(images).unsqueeze(dim=0)
return images
def display_gif(file_name, save_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
images.append(imageio.imread(image_filename))
gif_filename = 'avatar_source.gif'
return imageio.mimsave(gif_filename, images)
def display_gif_pad(file_name, save_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
image = image[:, :, :3]
image_pad = cv2.copyMakeBorder(image, 0, 0, 125, 125, cv2.BORDER_CONSTANT, value=0)
images.append(image_pad)
return imageio.mimsave(save_name, images)
def display_image(file_name):
image_filename = file_name + '0' + '.png'
print(image_filename)
image = imageio.imread(image_filename)
imageio.imwrite('image.png', image)
def concat(file_name):
images = []
for frame in range(8):
frame_name = '%d' % (frame)
image_filename = file_name + frame_name + '.png'
image = imageio.imread(image_filename)
images.append(image)
gif_filename = 'demo.gif'
return imageio.mimsave(gif_filename, images)
def MyPlot(frame_id, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt):
fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(10, 5))
axs[0, 0].imshow(src_orig)
axs[0, 0].set_title("\n\n\nOriginal\nInput")
axs[0, 0].axis('off')
axs[1, 0].imshow(tar_orig)
axs[1, 0].axis('off')
axs[0, 1].imshow(src_recon)
axs[0, 1].set_title("\n\n\nReconstructed\nOutput")
axs[0, 1].axis('off')
axs[1, 1].imshow(tar_recon)
axs[1, 1].axis('off')
axs[0, 2].imshow(src_Zt)
axs[0, 2].set_title("\n\n\nOutput\nw/ Zt")
axs[0, 2].axis('off')
axs[1, 2].imshow(tar_Zt)
axs[1, 2].axis('off')
axs[0, 3].imshow(tar_Zf_src_Zt)
axs[0, 3].set_title("\n\n\nExchange\nZt and Zf")
axs[0, 3].axis('off')
axs[1, 3].imshow(src_Zf_tar_Zt)
axs[1, 3].axis('off')
plt.subplots_adjust(hspace=0.06, wspace=0.05)
save_name = 'MyPlot_{}.png'.format(frame_id)
plt.savefig(save_name, dpi=200, format='png', bbox_inches='tight', pad_inches=0.0)
# == Load Model ==
model = TransferVAE_Video(opt)
model.load_state_dict(torch.load('TransferVAE.pth.tar', map_location=torch.device('cpu'))['state_dict'])
model.eval()
def run(domain_source, action_source, hair_source, top_source, bottom_source, domain_target, action_target, hair_target, top_target, bottom_target):
# == Source Avatar ==
# body
body_source = '0'
# hair
if hair_source == "green": hair_source = '0'
elif hair_source == "yellow": hair_source = '2'
elif hair_source == "rose": hair_source = '4'
elif hair_source == "red": hair_source = '7'
elif hair_source == "wine": hair_source = '8'
# top
if top_source == "brown": top_source = '0'
elif top_source == "blue": top_source = '1'
elif top_source == "white": top_source = '2'
# bottom
if bottom_source == "white": bottom_source = '0'
elif bottom_source == "golden": bottom_source = '1'
elif bottom_source == "red": bottom_source = '2'
elif bottom_source == "silver": bottom_source = '3'
file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
# == Target Avatar ==
# body
body_target = '1'
# hair
if hair_target == "violet": hair_target = '1'
elif hair_target == "silver": hair_target = '3'
elif hair_target == "purple": hair_target = '5'
elif hair_target == "grey": hair_target = '6'
elif hair_target == "golden": hair_target = '9'
# top
if top_target == "grey": top_target = '3'
elif top_target == "khaki": top_target = '4'
elif top_target == "linen": top_target = '5'
elif top_target == "ocre": top_target = '6'
# bottom
if bottom_target == "denim": bottom_target = '4'
elif bottom_target == "olive": bottom_target = '5'
elif bottom_target == "brown": bottom_target = '6'
file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
# == Load Input ==
images_source = name2seq(file_name_source)
images_target = name2seq(file_name_target)
x = torch.cat((images_source, images_target), dim=0)
# == Forward ==
with torch.no_grad():
f_post, z_post, recon_x = model(x, [0]*3)
src_orig_sample = x[0, :, :, :, :]
src_recon_sample = recon_x[0, :, :, :, :]
src_f_post = f_post[0, :].unsqueeze(0)
src_z_post = z_post[0, :, :].unsqueeze(0)
tar_orig_sample = x[1, :, :, :, :]
tar_recon_sample = recon_x[1, :, :, :, :]
tar_f_post = f_post[1, :].unsqueeze(0)
tar_z_post = z_post[1, :, :].unsqueeze(0)
# == Visualize ==
for frame in range(8):
# original frame
src_orig = src_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
tar_orig = tar_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# reconstructed frame
src_recon = src_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
tar_recon = tar_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# Zt
f_expand_src = 0 * src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_src = torch.cat((src_z_post, f_expand_src), dim=2)
recon_x_src = model.decoder_frame(zf_src)
src_Zt = recon_x_src.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
f_expand_tar = 0 * tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_tar = torch.cat((tar_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
recon_x_tar = model.decoder_frame(zf_tar)
tar_Zt = recon_x_tar.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
# Zf_Zt
f_expand_src = src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_srcZf_tarZt = torch.cat((tar_z_post, f_expand_src), dim=2) # batch,frames,(z_dim+f_dim)
recon_x_srcZf_tarZt = model.decoder_frame(zf_srcZf_tarZt)
src_Zf_tar_Zt = recon_x_srcZf_tarZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
f_expand_tar = tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
zf_tarZf_srcZt = torch.cat((src_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
recon_x_tarZf_srcZt = model.decoder_frame(zf_tarZf_srcZt)
tar_Zf_src_Zt = recon_x_tarZf_srcZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
MyPlot(frame, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt)
a = concat('MyPlot_')
return 'demo.gif'
gr.Interface(
run,
inputs=[
gr.Textbox(value="Source Avatar - Human", show_label=False, interactive=False),
gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
gr.Radio(choices=["brown", "blue", "white"], value="brown"),
gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
gr.Textbox(value="Target Avatar - Alien", show_label=False, interactive=False),
gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
],
outputs=[
gr.components.Image(type="file", label="Domain Disentanglement"),
],
live=True,
title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()