File size: 24,235 Bytes
2f23f07
52b383d
 
 
 
 
 
 
c2966ec
52b383d
d5f2bf5
52b383d
 
 
d63c6cd
d2bf1cc
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
11e4216
 
 
 
d5f2bf5
 
11e4216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
3c3a705
 
 
 
 
 
 
 
 
bb64240
3c3a705
 
 
 
bb64240
 
 
 
 
3c3a705
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
 
 
 
 
bb64240
 
 
 
3c3a705
 
 
 
 
 
 
 
bb64240
 
3c3a705
bb64240
 
3c3a705
bb64240
 
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
 
 
3c3a705
bb64240
 
 
3c3a705
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
 
 
 
 
3c3a705
bb64240
3c3a705
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
 
3c3a705
 
 
bb64240
 
3c3a705
 
 
 
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
bb64240
 
 
 
 
3c3a705
bb64240
 
 
3c3a705
bb64240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
cc74fc0
2f23f07
 
 
b5c625b
 
 
 
 
 
 
 
94b65fc
b5c625b
 
94b65fc
b5c625b
 
2ba277c
 
 
 
 
03888cd
2ba277c
 
b61fd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c3a705
 
 
 
 
 
0e9f0b7
1e99cb9
af62f38
1e99cb9
5a70ae3
1e99cb9
 
5a70ae3
 
 
 
 
ef99204
 
5a70ae3
 
 
ef99204
 
5a70ae3
 
 
 
2f23f07
5a70ae3
 
2f23f07
 
af62f38
e5456b5
af62f38
 
e5456b5
 
 
 
 
 
 
 
 
 
 
 
 
 
c240920
 
 
e5456b5
 
af62f38
 
b61fd46
 
 
 
5c941b8
af62f38
bb64240
b61fd46
 
3c3a705
b61fd46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a902b1
d5f2bf5
e174116
2bc17ff
136c53f
c082871
3c3a705
6ee80eb
95ec167
2c43fbf
2ba90cf
3c3a705
6ee80eb
e5456b5
 
60e9bf1
c082871
136c53f
7a902b1
136c53f
5490d43
ab34b0c
7654258
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
import gradio as gr

import cv2
import imageio
import math
from math import ceil
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function


class RelationModuleMultiScale(torch.nn.Module):

    def __init__(self, img_feature_dim, num_bottleneck, num_frames):
        super(RelationModuleMultiScale, self).__init__()
        self.subsample_num = 3
        self.img_feature_dim = img_feature_dim
        self.scales = [i for i in range(num_frames, 1, -1)]
        self.relations_scales = []
        self.subsample_scales = []
        for scale in self.scales:
            relations_scale = self.return_relationset(num_frames, scale)
            self.relations_scales.append(relations_scale)
            self.subsample_scales.append(min(self.subsample_num, len(relations_scale)))
        self.num_frames = num_frames
        self.fc_fusion_scales = nn.ModuleList()
        for i in range(len(self.scales)):
            scale = self.scales[i]
            fc_fusion = nn.Sequential(nn.ReLU(), nn.Linear(scale * self.img_feature_dim, num_bottleneck), nn.ReLU())
            self.fc_fusion_scales += [fc_fusion]

    def forward(self, input):
        act_scale_1 = input[:, self.relations_scales[0][0] , :]
        act_scale_1 = act_scale_1.view(act_scale_1.size(0), self.scales[0] * self.img_feature_dim)
        act_scale_1 = self.fc_fusion_scales[0](act_scale_1)
        act_scale_1 = act_scale_1.unsqueeze(1)
        act_all = act_scale_1.clone()
        for scaleID in range(1, len(self.scales)):
            act_relation_all = torch.zeros_like(act_scale_1)
            num_total_relations = len(self.relations_scales[scaleID])
            num_select_relations = self.subsample_scales[scaleID]
            idx_relations_evensample = [int(ceil(i * num_total_relations / num_select_relations)) for i in range(num_select_relations)]
            for idx in idx_relations_evensample:
                act_relation = input[:, self.relations_scales[scaleID][idx], :]
                act_relation = act_relation.view(act_relation.size(0), self.scales[scaleID] * self.img_feature_dim)
                act_relation = self.fc_fusion_scales[scaleID](act_relation)
                act_relation = act_relation.unsqueeze(1)
                act_relation_all += act_relation
            act_all = torch.cat((act_all, act_relation_all), 1)
        return act_all

    def return_relationset(self, num_frames, num_frames_relation):
        import itertools
        return list(itertools.combinations([i for i in range(num_frames)], num_frames_relation))


class GradReverse(Function):
    @staticmethod
    def forward(ctx, x, beta):
        ctx.beta = beta
        return x.view_as(x)

    @staticmethod
    def backward(ctx, grad_output):
        grad_input = grad_output.neg() * ctx.beta
        return grad_input, None   


class TransferVAE_Video(nn.Module):

    def __init__(self):
        super(TransferVAE_Video, self).__init__()
        self.f_dim = 512
        self.z_dim = 512
        self.fc_dim = 1024
        self.channels = 3
        self.frames = 8
        self.batch_size = 128
        self.dropout_rate = 0.5
        self.num_class = 15
        self.prior_sample = 'random'
        
        import dcgan_64
        self.encoder = dcgan_64.encoder(self.fc_dim, self.channels)
        self.decoder = dcgan_64.decoder_woSkip(self.z_dim + self.f_dim, self.channels)
        self.fc_output_dim = self.fc_dim

        self.relu = nn.LeakyReLU(0.1)
        self.dropout_f = nn.Dropout(p=self.dropout_rate)
        self.dropout_v = nn.Dropout(p=self.dropout_rate)
     
        self.hidden_dim = 512
        self.f_rnn_layers = 1

        self.z_prior_lstm_ly1 = nn.LSTMCell(self.z_dim, self.hidden_dim)
        self.z_prior_lstm_ly2 = nn.LSTMCell(self.hidden_dim, self.hidden_dim)

        self.z_prior_mean = nn.Linear(self.hidden_dim, self.z_dim)
        self.z_prior_logvar = nn.Linear(self.hidden_dim, self.z_dim)

        self.z_lstm = nn.LSTM(self.fc_output_dim, self.hidden_dim, self.f_rnn_layers, bidirectional=True, batch_first=True)
        self.f_mean = nn.Linear(self.hidden_dim * 2, self.f_dim)
        self.f_logvar = nn.Linear(self.hidden_dim * 2, self.f_dim)

        self.z_rnn = nn.RNN(self.hidden_dim * 2, self.hidden_dim, batch_first=True)
        self.z_mean = nn.Linear(self.hidden_dim, self.z_dim)
        self.z_logvar = nn.Linear(self.hidden_dim, self.z_dim)
        
        self.fc_feature_domain_frame = nn.Linear(self.z_dim, self.z_dim)
        self.fc_classifier_domain_frame = nn.Linear(self.z_dim, 2)
        
        self.num_bottleneck = 256
        self.TRN = RelationModuleMultiScale(self.z_dim, self.num_bottleneck, self.frames)
        self.bn_trn_S = nn.BatchNorm1d(self.num_bottleneck)
        self.bn_trn_T = nn.BatchNorm1d(self.num_bottleneck)
        self.feat_aggregated_dim = self.num_bottleneck
            
        self.fc_feature_domain_video = nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim)
        self.fc_classifier_domain_video = nn.Linear(self.feat_aggregated_dim, 2)
        
        self.relation_domain_classifier_all = nn.ModuleList()
        for i in range(self.frames-1):
            relation_domain_classifier = nn.Sequential(
                nn.Linear(self.feat_aggregated_dim, self.feat_aggregated_dim),
                nn.ReLU(),
                nn.Linear(self.feat_aggregated_dim, 2)
            )
            self.relation_domain_classifier_all += [relation_domain_classifier]
        
        self.pred_classifier_video = nn.Linear(self.feat_aggregated_dim, self.num_class)

        self.fc_feature_domain_latent = nn.Linear(self.f_dim, self.f_dim)
        self.fc_classifier_doamin_latent = nn.Linear(self.f_dim, 2)
    
    
    def domain_classifier_frame(self, feat, beta):
        feat_fc_domain_frame = GradReverse.apply(feat, beta)
        feat_fc_domain_frame = self.fc_feature_domain_frame(feat_fc_domain_frame)
        feat_fc_domain_frame = self.relu(feat_fc_domain_frame)
        pred_fc_domain_frame = self.fc_classifier_domain_frame(feat_fc_domain_frame)
        return pred_fc_domain_frame
    
    
    def domain_classifier_video(self, feat_video, beta):
        feat_fc_domain_video = GradReverse.apply(feat_video, beta)
        feat_fc_domain_video = self.fc_feature_domain_video(feat_fc_domain_video)
        feat_fc_domain_video = self.relu(feat_fc_domain_video)
        pred_fc_domain_video = self.fc_classifier_domain_video(feat_fc_domain_video)
        return pred_fc_domain_video
    
    
    def domain_classifier_latent(self, f):
        feat_fc_domain_latent = self.fc_feature_domain_latent(f)
        feat_fc_domain_latent = self.relu(feat_fc_domain_latent)
        pred_fc_domain_latent = self.fc_classifier_doamin_latent(feat_fc_domain_latent)
        return pred_fc_domain_latent
    
    
    def domain_classifier_relation(self, feat_relation, beta):
        pred_fc_domain_relation_video = None
        for i in range(len(self.relation_domain_classifier_all)):
            feat_relation_single = feat_relation[:,i,:].squeeze(1)
            feat_fc_domain_relation_single = GradReverse.apply(feat_relation_single, beta)

            pred_fc_domain_relation_single = self.relation_domain_classifier_all[i](feat_fc_domain_relation_single)

            if pred_fc_domain_relation_video is None:
                pred_fc_domain_relation_video = pred_fc_domain_relation_single.view(-1,1,2)
            else:
                pred_fc_domain_relation_video = torch.cat((pred_fc_domain_relation_video, pred_fc_domain_relation_single.view(-1,1,2)), 1)

        pred_fc_domain_relation_video = pred_fc_domain_relation_video.view(-1,2)

        return pred_fc_domain_relation_video
    
    
    def get_trans_attn(self, pred_domain):
        softmax = nn.Softmax(dim=1)
        logsoftmax = nn.LogSoftmax(dim=1)
        entropy = torch.sum(-softmax(pred_domain) * logsoftmax(pred_domain), 1)
        weights = 1 - entropy
        return weights

    
    def get_general_attn(self, feat):
        num_segments = feat.size()[1]
        feat = feat.view(-1, feat.size()[-1]) # reshape features: 128x4x256 --> (128x4)x256
        weights = self.attn_layer(feat) # e.g. (128x4)x1
        weights = weights.view(-1, num_segments, weights.size()[-1]) # reshape attention weights: (128x4)x1 --> 128x4x1
        weights = F.softmax(weights, dim=1)  # softmax over segments ==> 128x4x1
        return weights
    
    
    def get_attn_feat_relation(self, feat_fc, pred_domain, num_segments):
        weights_attn = self.get_trans_attn(pred_domain)
        weights_attn = weights_attn.view(-1, num_segments-1, 1).repeat(1,1,feat_fc.size()[-1]) # reshape & repeat weights (e.g. 16 x 4 x 256)
        feat_fc_attn = (weights_attn+1) * feat_fc
        return feat_fc_attn, weights_attn[:,:,0]
    
          
    def encode_and_sample_post(self, x):
        if isinstance(x, list):
            conv_x = self.encoder_frame(x[0])
        else:
            conv_x = self.encoder_frame(x)
        
        # pass the bidirectional lstm
        lstm_out, _ = self.z_lstm(conv_x)
        
        # get f:
        backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
        frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
        lstm_out_f = torch.cat((frontal, backward), dim=1)
        f_mean = self.f_mean(lstm_out_f)
        f_logvar = self.f_logvar(lstm_out_f)
        f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)

        # pass to one direction rnn
        features, _ = self.z_rnn(lstm_out)
        z_mean = self.z_mean(features)
        z_logvar = self.z_logvar(features)
        z_post = self.reparameterize(z_mean, z_logvar, random_sampling=False)

        if isinstance(x, list):
            f_mean_list = [f_mean]
            f_post_list = [f_post]
            for t in range(1,3,1):
                conv_x = self.encoder_frame(x[t])
                lstm_out, _ = self.z_lstm(conv_x)
                # get f:
                backward = lstm_out[:, 0, self.hidden_dim:2 * self.hidden_dim]
                frontal = lstm_out[:, self.frames - 1, 0:self.hidden_dim]
                lstm_out_f = torch.cat((frontal, backward), dim=1)
                f_mean = self.f_mean(lstm_out_f)
                f_logvar = self.f_logvar(lstm_out_f)
                f_post = self.reparameterize(f_mean, f_logvar, random_sampling=False)
                f_mean_list.append(f_mean)
                f_post_list.append(f_post)
            f_mean = f_mean_list
            f_post = f_post_list
        # f_mean and f_post are list if triple else not
        return f_mean, f_logvar, f_post, z_mean, z_logvar, z_post

    
    def decoder_frame(self,zf):
        recon_x = self.decoder(zf)
        return recon_x


    def encoder_frame(self, x):
        x_shape = x.shape
        x = x.view(-1, x_shape[-3], x_shape[-2], x_shape[-1])
        x_embed = self.encoder(x)[0]
        return x_embed.view(x_shape[0], x_shape[1], -1)
    

    def reparameterize(self, mean, logvar, random_sampling=True):
        # Reparametrization occurs only if random sampling is set to true, otherwise mean is returned
        if random_sampling is True:
            eps = torch.randn_like(logvar)
            std = torch.exp(0.5 * logvar)
            z = mean + eps * std
            return z
        else:
            return mean

    def sample_z_prior_train(self, z_post, random_sampling=True):
        z_out = None
        z_means = None
        z_logvars = None
        batch_size = z_post.shape[0]

        z_t = torch.zeros(batch_size, self.z_dim).cpu()
        h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()

        for i in range(self.frames):
            # two layer LSTM and two one-layer FC
            h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
            h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))

            z_mean_t = self.z_prior_mean(h_t_ly2)
            z_logvar_t = self.z_prior_logvar(h_t_ly2)
            z_prior = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
            if z_out is None:
                # If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
                z_out = z_prior.unsqueeze(1)
                z_means = z_mean_t.unsqueeze(1)
                z_logvars = z_logvar_t.unsqueeze(1)
            else:
                # If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
                z_out = torch.cat((z_out, z_prior.unsqueeze(1)), dim=1)
                z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
                z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
            z_t = z_post[:,i,:]
        return z_means, z_logvars, z_out

    # If random sampling is true, reparametrization occurs else z_t is just set to the mean
    def sample_z(self, batch_size, random_sampling=True):
        z_out = None  # This will ultimately store all z_s in the format [batch_size, frames, z_dim]
        z_means = None
        z_logvars = None

        # All states are initially set to 0, especially z_0 = 0
        z_t = torch.zeros(batch_size, self.z_dim).cpu()
        # z_mean_t = torch.zeros(batch_size, self.z_dim)
        # z_logvar_t = torch.zeros(batch_size, self.z_dim)
        h_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly1 = torch.zeros(batch_size, self.hidden_dim).cpu()
        h_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
        c_t_ly2 = torch.zeros(batch_size, self.hidden_dim).cpu()
        for _ in range(self.frames):
            # h_t, c_t = self.z_prior_lstm(z_t, (h_t, c_t))
            # two layer LSTM and two one-layer FC
            h_t_ly1, c_t_ly1 = self.z_prior_lstm_ly1(z_t, (h_t_ly1, c_t_ly1))
            h_t_ly2, c_t_ly2 = self.z_prior_lstm_ly2(h_t_ly1, (h_t_ly2, c_t_ly2))

            z_mean_t = self.z_prior_mean(h_t_ly2)
            z_logvar_t = self.z_prior_logvar(h_t_ly2)
            z_t = self.reparameterize(z_mean_t, z_logvar_t, random_sampling)
            if z_out is None:
                # If z_out is none it means z_t is z_1, hence store it in the format [batch_size, 1, z_dim]
                z_out = z_t.unsqueeze(1)
                z_means = z_mean_t.unsqueeze(1)
                z_logvars = z_logvar_t.unsqueeze(1)
            else:
                # If z_out is not none, z_t is not the initial z and hence append it to the previous z_ts collected in z_out
                z_out = torch.cat((z_out, z_t.unsqueeze(1)), dim=1)
                z_means = torch.cat((z_means, z_mean_t.unsqueeze(1)), dim=1)
                z_logvars = torch.cat((z_logvars, z_logvar_t.unsqueeze(1)), dim=1)
        return z_means, z_logvars, z_out

    def forward(self, x, beta):
        _, _, f_post, _, _, z_post = self.encode_and_sample_post(x)
        
        if isinstance(f_post, list):
            f_expand = f_post[0].unsqueeze(1).expand(-1, self.frames, self.f_dim)
        else:
            f_expand = f_post.unsqueeze(1).expand(-1, self.frames, self.f_dim)
        zf = torch.cat((z_post, f_expand), dim=2)
        
        recon_x = self.decoder_frame(zf)
        
        return f_post, z_post, recon_x
    

def name2seq(file_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        images.append(image[:, :, :3])

    images = np.asarray(images, dtype='f') / 256.0
    images = images.transpose((0, 3, 1, 2))
    images = torch.Tensor(images).unsqueeze(dim=0)
    return images
    
    
def display_gif(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        images.append(imageio.imread(image_filename))

    gif_filename = 'avatar_source.gif'
    return imageio.mimsave(gif_filename, images)


def display_gif_pad(file_name, save_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        image = image[:, :, :3]
        image_pad = cv2.copyMakeBorder(image, 0, 0, 125, 125, cv2.BORDER_CONSTANT, value=0)
        images.append(image_pad)

    return imageio.mimsave(save_name, images)
    

def display_image(file_name):

    image_filename = file_name + '0' + '.png'
    print(image_filename)
    image = imageio.imread(image_filename)
    imageio.imwrite('image.png', image)
    

def concat(file_name):
    images = []

    for frame in range(8):
        frame_name = '%d' % (frame)
        image_filename = file_name + frame_name + '.png'
        image = imageio.imread(image_filename)
        images.append(image)

    gif_filename = 'demo.gif'
    return imageio.mimsave(gif_filename, images)
    

def MyPlot(frame_id, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt):
    
    fig, axs = plt.subplots(2, 4, sharex=True, sharey=True, figsize=(10, 5))
    
    axs[0, 0].imshow(src_orig)
    axs[0, 0].set_title("\n\n\nOriginal\nInput")
    axs[0, 0].axis('off')

    axs[1, 0].imshow(tar_orig)
    axs[1, 0].axis('off')

    axs[0, 1].imshow(src_recon)
    axs[0, 1].set_title("\n\n\nReconstructed\nOutput")
    axs[0, 1].axis('off')

    axs[1, 1].imshow(tar_recon)
    axs[1, 1].axis('off')

    axs[0, 2].imshow(src_Zt)
    axs[0, 2].set_title("\n\n\nOutput\nw/ Zt")
    axs[0, 2].axis('off')

    axs[1, 2].imshow(tar_Zt)
    axs[1, 2].axis('off')
    
    axs[0, 3].imshow(tar_Zf_src_Zt)
    axs[0, 3].set_title("\n\n\nExchange\nZt and Zf")
    axs[0, 3].axis('off')

    axs[1, 3].imshow(src_Zf_tar_Zt)
    axs[1, 3].axis('off')
    
    plt.subplots_adjust(hspace=0.06, wspace=0.05)
    
    save_name = 'MyPlot_{}.png'.format(frame_id)
    
    plt.savefig(save_name, dpi=200, format='png', bbox_inches='tight', pad_inches=0.0)
    

# == Load Model ==
model = TransferVAE_Video(opt)
model.load_state_dict(torch.load('TransferVAE.pth.tar', map_location=torch.device('cpu'))['state_dict'])
model.eval()
    
  
def run(domain_source, action_source, hair_source, top_source, bottom_source, domain_target, action_target, hair_target, top_target, bottom_target):

    # == Source Avatar ==
    # body
    body_source = '0'
    
    # hair
    if hair_source == "green": hair_source = '0'
    elif hair_source == "yellow": hair_source = '2'
    elif hair_source == "rose": hair_source = '4'
    elif hair_source == "red": hair_source = '7'
    elif hair_source == "wine": hair_source = '8'
    
    # top
    if top_source == "brown": top_source = '0'
    elif top_source == "blue": top_source = '1'
    elif top_source == "white": top_source = '2'
    
    # bottom
    if bottom_source == "white": bottom_source = '0'
    elif bottom_source == "golden": bottom_source = '1'
    elif bottom_source == "red": bottom_source = '2'
    elif bottom_source == "silver": bottom_source = '3'
    
    file_name_source = './Sprite/frames/domain_1/' + action_source + '/'
    file_name_source = file_name_source + 'front' + '_' + str(body_source) + str(bottom_source) + str(top_source) + str(hair_source) + '_'
    
    
    # == Target Avatar ==
    # body
    body_target = '1'
    
    # hair
    if hair_target == "violet": hair_target = '1'
    elif hair_target == "silver": hair_target = '3'
    elif hair_target == "purple": hair_target = '5'
    elif hair_target == "grey": hair_target = '6'
    elif hair_target == "golden": hair_target = '9'
    
    # top
    if top_target == "grey": top_target = '3'
    elif top_target == "khaki": top_target = '4'
    elif top_target == "linen": top_target = '5'
    elif top_target == "ocre": top_target = '6'
    
    # bottom
    if bottom_target == "denim": bottom_target = '4'
    elif bottom_target == "olive": bottom_target = '5'
    elif bottom_target == "brown": bottom_target = '6'
    
    file_name_target = './Sprite/frames/domain_2/' + action_target + '/'
    file_name_target = file_name_target + 'front' + '_' + str(body_target) + str(bottom_target) + str(top_target) + str(hair_target) + '_'
    
    
    # == Load Input ==
    images_source = name2seq(file_name_source)
    images_target = name2seq(file_name_target)
    x = torch.cat((images_source, images_target), dim=0)
    
    
    # == Forward ==
    with torch.no_grad():
    f_post, z_post, recon_x = model(x, [0]*3)
     
    src_orig_sample = x[0, :, :, :, :]
    src_recon_sample = recon_x[0, :, :, :, :]
    src_f_post = f_post[0, :].unsqueeze(0)
    src_z_post = z_post[0, :, :].unsqueeze(0)

    tar_orig_sample = x[1, :, :, :, :]
    tar_recon_sample = recon_x[1, :, :, :, :]
    tar_f_post = f_post[1, :].unsqueeze(0)
    tar_z_post = z_post[1, :, :].unsqueeze(0)   
    
    
    # == Visualize ==
    for frame in range(8):
    
        # original frame
        src_orig = src_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
        tar_orig = tar_orig_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # reconstructed frame
        src_recon = src_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
        tar_recon = tar_recon_sample[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # Zt
        f_expand_src = 0 * src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_src = torch.cat((src_z_post, f_expand_src), dim=2)
        recon_x_src = model.decoder_frame(zf_src)
        src_Zt = recon_x_src.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        f_expand_tar = 0 * tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_tar = torch.cat((tar_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
        recon_x_tar = model.decoder_frame(zf_tar)
        tar_Zt = recon_x_tar.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        # Zf_Zt
        f_expand_src = src_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_srcZf_tarZt = torch.cat((tar_z_post, f_expand_src), dim=2) # batch,frames,(z_dim+f_dim)
        recon_x_srcZf_tarZt = model.decoder_frame(zf_srcZf_tarZt)
        src_Zf_tar_Zt = recon_x_srcZf_tarZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))
    
        f_expand_tar = tar_f_post.unsqueeze(1).expand(-1, 8, opt.f_dim)
        zf_tarZf_srcZt = torch.cat((src_z_post, f_expand_tar), dim=2) # batch,frames,(z_dim+f_dim)
        recon_x_tarZf_srcZt = model.decoder_frame(zf_tarZf_srcZt)
        tar_Zf_src_Zt = recon_x_tarZf_srcZt.squeeze()[frame, :, :, :].detach().numpy().transpose((1, 2, 0))

        MyPlot(frame, src_orig, tar_orig, src_recon, tar_recon, src_Zt, tar_Zt, src_Zf_tar_Zt, tar_Zf_src_Zt)
        
    a = concat('MyPlot_')
    
    return 'demo.gif'


gr.Interface(
    run,
    inputs=[
        gr.Textbox(value="Source Avatar - Human", show_label=False, interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="slash"),
        gr.Radio(choices=["green", "yellow", "rose", "red", "wine"], value="green"),
        gr.Radio(choices=["brown", "blue", "white"], value="brown"),
        gr.Radio(choices=["white", "golden", "red", "silver"], value="white"),
        gr.Textbox(value="Target Avatar - Alien", show_label=False, interactive=False),
        gr.Radio(choices=["slash", "spellcard", "walk"], value="walk"),
        gr.Radio(choices=["violet", "silver", "purple", "grey", "golden"], value="golden"),
        gr.Radio(choices=["grey", "khaki", "linen", "ocre"], value="ocre"),
        gr.Radio(choices=["denim", "olive", "brown"], value="brown"),
    ],
    outputs=[
        gr.components.Image(type="file", label="Domain Disentanglement"),
    ],
    live=True,
    title="TransferVAE for Unsupervised Video Domain Adaptation",
).launch()