File size: 13,479 Bytes
84ac217
 
 
9b5b26a
79762d1
c19d193
7424866
84ac217
 
79762d1
 
0df6a93
6aae614
8367cf9
9a3e8e7
be9a1ee
84ac217
8fe992b
0df6a93
9b5b26a
84ac217
be9a1ee
84ac217
 
 
 
fa6d5fa
 
 
 
 
 
be9a1ee
 
 
 
 
b76efe0
be9a1ee
84ac217
 
be9a1ee
fae2aeb
84ac217
 
0df6a93
 
 
 
 
be9a1ee
84ac217
0df6a93
be9a1ee
 
84ac217
 
0df6a93
 
be9a1ee
 
f674ad5
fae2aeb
 
be9a1ee
9b5b26a
 
be9a1ee
9b5b26a
76a2101
9b5b26a
 
 
be9a1ee
9b5b26a
 
 
8c01ffb
 
0df6a93
 
f33cabc
0df6a93
 
 
 
 
 
 
 
7424866
 
f33cabc
 
 
7424866
 
f33cabc
 
 
7424866
f33cabc
 
 
0df6a93
 
 
7424866
be9a1ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ac217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba86979
79762d1
ba86979
 
 
 
79762d1
ba86979
 
fae2aeb
 
b76efe0
fae2aeb
 
 
 
 
 
 
79762d1
 
fae2aeb
 
 
 
79762d1
fae2aeb
79762d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa6d5fa
 
 
 
 
 
 
 
 
 
 
 
 
79762d1
 
f9fcb2a
fa6d5fa
be9a1ee
6aae614
8367cf9
be9a1ee
 
84ac217
be9a1ee
 
84ac217
be9a1ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0df6a93
ae7a494
b76efe0
79762d1
b76efe0
79762d1
 
 
 
 
 
b76efe0
861422e
 
76a2101
 
be9a1ee
 
 
 
 
84ac217
 
be9a1ee
 
2522a57
84ac217
0df6a93
84ac217
 
76a2101
 
 
84ac217
76a2101
84ac217
 
8c01ffb
79762d1
84ac217
 
 
 
 
79762d1
 
84ac217
 
 
 
 
 
 
 
 
fae2aeb
84ac217
 
8fe992b
 
84ac217
 
f9fcb2a
84ac217
 
 
 
4236cc3
b76efe0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os
import base64
import math
import pytz
import torch
import yaml
import pycountry
import subprocess
import sys
import numpy as np
import sounddevice as sd

from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.translation import TranslationTool
from tools.best_model_for_task import HFModelDownloadsTool
from tools.rag_transformers import retriever_tool

from transformers import pipeline
from Gradio_UI import GradioUI
from Gradio_UI_with_image import GradioUIImage
from dotenv import load_dotenv
from datetime import datetime
from skimage import io
from PIL import Image
from typing import Optional, Tuple

from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

from langchain_community.agent_toolkits.load_tools import load_tools
from langchain.chains import LLMChain
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI
from transformers import AutoTokenizer

from io import BytesIO
from time import sleep

from smolagents.utils import BASE_BUILTIN_MODULES
from smolagents.agents import ActionStep
from smolagents.cli import load_model
from smolagents import (
    CodeAgent,
    DuckDuckGoSearchTool,
    GoogleSearchTool,
    HfApiModel,
    TransformersModel,
    OpenAIServerModel,
    load_tool,
    Tool,
    tool,
    ToolCollection,
    E2BExecutor
)

# load .env vars
load_dotenv()

BASE_BUILTIN_MODULES.remove("re")

# fast prototyping tools
@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone formatted as '%m/%d/%y %H:%M:%S'
    Args:
        timezone (str): A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        tz = pytz.timezone(timezone)
        local_time = datetime.now(tz).strftime('%m/%d/%y %H:%M:%S')
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


@tool
def language_detection(text:str)-> str:
    """Detects the language of the input text using basic xlm-roberta-base-language-detection.
     Args:
        text: the input message or wording to detect language from.
    """
    model_ckpt = "papluca/xlm-roberta-base-language-detection"
    pipe = pipeline("text-classification", model=model_ckpt)
    preds = pipe(text, return_all_scores=True, truncation=True, max_length=128)
    if preds:
        pred = preds[0]
        language_probabilities_dict = {p["label"]: float(p["score"]) for p in pred}
        predicted_language_code = max(language_probabilities_dict, key=language_probabilities_dict.get)
        tool_prediction_confidence = language_probabilities_dict[predicted_language_code]
        confidence_str = f"Tool Confidence: {tool_prediction_confidence}"
        predicted_language_code_str = f"Predicted language code (ISO 639): {predicted_language_code}/n{confidence_str}"
        try:
            predicted_language = pycountry.languages.get(alpha_2=predicted_language_code)
            if predicted_language:
                predicted_language_str = f"Predicted language: {predicted_language.name}/n{confidence_str}"
                return predicted_language_str 
            return predicted_language_code_str
            
        except Exception as e:
            return f"Error mapping country code to name (pycountry): {str(e)}/n{predicted_language_code_str}"
    else:
        return "None"


@tool
def advanced_image_generation(description:str)->Image.Image:
    """Generates an image using a textual description.
         Args:
            description: the textual description provided by the user to prompt a text-to-image model
        """
    llm = OpenAI(temperature=0.9)
    prompt = PromptTemplate(
        input_variables=["image_desc"],
        template="Generate a detailed but short prompt (must be less than 900 characters) to generate an image based on the following description: {image_desc}",
    )
    chain = LLMChain(llm=llm, prompt=prompt)
    image_url = DallEAPIWrapper().run(chain.run(description))
    image_array = io.imread(image_url)
    pil_image = Image.fromarray(image_array)
    return pil_image


@tool
def calculate_cargo_travel_time(
    origin_coords: Tuple[float, float],
    destination_coords: Tuple[float, float],
    cruising_speed_kmh: Optional[float] = 750.0,  # Average speed for cargo planes
) -> float:
    """
    Calculate the travel time for a cargo plane between two points on Earth using great-circle distance.

    Args:
        origin_coords: Tuple of (latitude, longitude) for the starting point
        destination_coords: Tuple of (latitude, longitude) for the destination
        cruising_speed_kmh: Optional cruising speed in km/h (defaults to 750 km/h for typical cargo planes)

    Returns:
        float: The estimated travel time in hours

    Example:
        >>> # Chicago (41.8781° N, 87.6298° W) to Sydney (33.8688° S, 151.2093° E)
        >>> result = calculate_cargo_travel_time((41.8781, -87.6298), (-33.8688, 151.2093))
    """

    def to_radians(degrees: float) -> float:
        return degrees * (math.pi / 180)

    # Extract coordinates
    lat1, lon1 = map(to_radians, origin_coords)
    lat2, lon2 = map(to_radians, destination_coords)

    # Earth's radius in kilometers
    EARTH_RADIUS_KM = 6371.0

    # Calculate great-circle distance using the haversine formula
    dlon = lon2 - lon1
    dlat = lat2 - lat1

    a = (
        math.sin(dlat / 2) ** 2
        + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2) ** 2
    )
    c = 2 * math.asin(math.sqrt(a))
    distance = EARTH_RADIUS_KM * c

    # Add 10% to account for non-direct routes and air traffic controls
    actual_distance = distance * 1.1

    # Calculate flight time
    # Add 1 hour for takeoff and landing procedures
    flight_time = (actual_distance / cruising_speed_kmh) + 1.0

    # Format the results
    return round(flight_time, 2)


@tool
def browser_automation(original_user_query:str)->str:
    """
    Browser automation is like “simulating a real user” and works for interactive,
    dynamic sites and when visual navigation is required to show the process to the user.
    Navigates the web using helium to answer a user query by appending helium_instructions to the original query
    by searching for text matches through the navigation.
    Args:
        original_user_query: The original
    """
    # Use sys.executable to ensure the same Python interpreter is used.
    result = subprocess.run(
        [sys.executable, "vision_web_browser.py", original_user_query],
        capture_output=True,  # Captures both stdout and stderr
        text=True  # Returns output as a string instead of bytes
    )
    print("vision_web_browser.py: ", result.stderr)
    return result.stdout


text_to_speech_pipe = pipeline(
    task="text-to-speech",
    model="suno/bark-small",
    device = 0 if torch.cuda.is_available() else "cpu",
    torch_dtype=torch.float16,
    )
text_to_speech_pipe.model.enable_cpu_offload()
text_to_speech_pipe.model.use_flash_attention_2=True
text_to_speech_pipe.model.pad_token_id=0  # 50257



tokenizer = AutoTokenizer.from_pretrained("suno/bark-small")
#print("suno/bark-small tokenizer pad_token_id: ", tokenizer.pad_token_id)  # 0
#print("suno/bark-small tokenizer eos_token_id: ", tokenizer.eos_token_id)  # none
text_to_speech_pipe.model.pad_token_id = tokenizer.pad_token_id
text_to_speech_pipe.model.eos_token_id = tokenizer.eos_token_id


def speech_to_text(final_answer_text, agent_memory):
    text = f"[clears throat] Here is the final answer: {final_answer_text}"
    # attention_mask = [1] * len(text.split())  # Create an attention mask for your text

    # Run the pipeline with the attention mask
    output = text_to_speech_pipe(text)

    # display(Audio(output["audio"], rate=output["sampling_rate"]))  # notebook
    audio = np.array(output["audio"], dtype=np.float32)
    print("Original audio shape:", audio.shape)

    # Adjust audio shape if necessary:
    if audio.ndim == 1:
        # Mono audio, should be fine. You can check if your device expects stereo.
        print("Mono audio... should be fine. You can check if your device expects stereo.")
    elif audio.ndim == 2:
        # Check if the number of channels is acceptable (e.g., 1 or 2)
        channels = audio.shape[1]
        if channels not in [1, 2]:
            # Try to squeeze extra dimensions
            audio = np.squeeze(audio)
            print("Squeezed audio shape:", audio.shape)
    else:
        # If audio has more dimensions than expected, flatten or reshape as needed
        audio = np.squeeze(audio)
        print("Squeezed audio shape:", audio.shape)

    # Play the audio using sounddevice
    try:
        sd.play(audio, output["sampling_rate"])
        sd.wait()  # Wait until audio playback is complete
    except Exception as e:
        print(f"Error playing audio: {e}")

    return True


def initialize_langfuse_opentelemetry_instrumentation():
    LANGFUSE_PUBLIC_KEY=os.environ.get("LANGFUSE_PUBLIC_KEY")
    LANGFUSE_SECRET_KEY=os.environ.get("LANGFUSE_SECRET_KEY")
    LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LANGFUSE_SECRET_KEY}".encode()).decode()
    
    os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
    os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
    
    trace_provider = TracerProvider()
    trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
    
    SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)


# telemetry
initialize_langfuse_opentelemetry_instrumentation()

# load tools from /tools/
final_answer = FinalAnswerTool()
visit_webpage = VisitWebpageTool()
translation = TranslationTool()
best_model_for_task = HFModelDownloadsTool()
transformers_retriever = retriever_tool

# load tools from smoloagents library
google_web_search = GoogleSearchTool()  # provider="serper" (SERPER_API_KEY) or "serpapi" (default)
google_web_search.name = "google_web_search"
duckduckgo_web_search = DuckDuckGoSearchTool()
duckduckgo_web_search.name = "duckduckgo_web_search"

# load tools from hub and langchain
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
image_generation_tool = load_tool("m-ric/text-to-image", trust_remote_code=True)  # Tool.from_space("black-forest-labs/FLUX.1-schnell", name="image_generator", description="Generate an image from a prompt")
advanced_search_tool = Tool.from_langchain(load_tools(["searchapi"], allow_dangerous_tools=True)[0])  # serpapi is not real time scrapping
advanced_search_tool.name = "advanced_search_tool"

image_generation_tool_fast = Tool.from_space(
    "black-forest-labs/FLUX.1-schnell",
    name="image_generator",
    description="Generate an image from a prompt"
)


ceo_model = load_model("LiteLLMModel", "gpt-4o")   # or anthropic/claude-3-sonnet

"""
ceo_model = HfApiModel(
max_tokens=2096,  # 8096 for manager
temperature=0.5,
model_id=  'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',  # "meta-llama/Llama-3.3-70B-Instruct",  # 'https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',  # same as Qwen/Qwen2.5-Coder-32B-Instruct
custom_role_conversions=None,
)
"""
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

tools = [
        final_answer,
        best_model_for_task,
        advanced_search_tool,
        google_web_search,
        duckduckgo_web_search,
        visit_webpage,
        browser_automation,
        get_current_time_in_timezone,
        advanced_image_generation,
        image_generation_tool,
        transformers_retriever,
        language_detection,
        translation,
        calculate_cargo_travel_time
    ]

agent = CodeAgent(
    model=ceo_model,
    tools=tools,
    max_steps=20,  # 15 is good for a light manager, too much when there is no need of a manager
    verbosity_level=2,
    grammar=None,
    # planning_interval=5,  # (add more steps for heavier reasoning, leave default if not manager)  # test for crashing issues.
    name="Alfredo",
    description="CEO",
    prompt_templates=prompt_templates,
    # executor_type="e2b",  # security, could also be "docker" (set keys)
    # sandbox=E2BSandbox()  (or E2BExecutor?),
    # step_callbacks=[save_screenshot],  # todo: configure the web_navigation agent as a separate agent and manage it with alfred
    final_answer_checks=[speech_to_text],
    additional_authorized_imports=[
        "geopandas",
        "plotly",
        "shapely",
        "json",
        "pandas",
        "numpy",
        "requests",
        "helium",
        "bs4"
    ],
    # I could also add the authorized_imports from a LIST_SAFE_MODULES
)

agent.python_executor("from helium import *")   # agent.state

# agent.push_to_hub('laverdes/Alfredo')
agent.visualize()

# prompt = ("navigate to a random wikipedia page and give me a summary of the content, then make a single image representing all the content")
# agent.run(prompt)

GradioUI(agent).launch()