chore: app update, authorized imports
Browse files- .gitignore +3 -0
- Gradio_UI.py +108 -1
- agent.json +1 -2
- app.py +19 -2
- requirements.txt +16 -3
.gitignore
CHANGED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.env
|
| 2 |
+
tools/unassigned.py
|
| 3 |
+
/todos_and_alternatives.py
|
Gradio_UI.py
CHANGED
|
@@ -13,16 +13,22 @@
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
|
|
|
| 16 |
import mimetypes
|
| 17 |
import os
|
| 18 |
import re
|
| 19 |
import shutil
|
| 20 |
from typing import Optional
|
| 21 |
|
|
|
|
| 22 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 23 |
-
from smolagents.agents import ActionStep, MultiStepAgent
|
| 24 |
from smolagents.memory import MemoryStep
|
| 25 |
from smolagents.utils import _is_package_available
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
def pull_messages_from_step(
|
|
@@ -123,6 +129,93 @@ def pull_messages_from_step(
|
|
| 123 |
yield gr.ChatMessage(role="assistant", content="-----")
|
| 124 |
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
def stream_to_gradio(
|
| 127 |
agent,
|
| 128 |
task: str,
|
|
@@ -151,6 +244,20 @@ def stream_to_gradio(
|
|
| 151 |
for message in pull_messages_from_step(
|
| 152 |
step_log,
|
| 153 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
yield message
|
| 155 |
|
| 156 |
final_answer = step_log # Last log is the run's final_answer
|
|
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
+
import asyncio
|
| 17 |
import mimetypes
|
| 18 |
import os
|
| 19 |
import re
|
| 20 |
import shutil
|
| 21 |
from typing import Optional
|
| 22 |
|
| 23 |
+
import torch
|
| 24 |
from smolagents.agent_types import AgentAudio, AgentImage, AgentText, handle_agent_output_types
|
| 25 |
+
from smolagents.agents import ActionStep, MultiStepAgent, PlanningStep, TaskStep
|
| 26 |
from smolagents.memory import MemoryStep
|
| 27 |
from smolagents.utils import _is_package_available
|
| 28 |
+
from transformers import pipeline, AutoTokenizer
|
| 29 |
+
|
| 30 |
+
import numpy as np
|
| 31 |
+
import sounddevice as sd
|
| 32 |
|
| 33 |
|
| 34 |
def pull_messages_from_step(
|
|
|
|
| 129 |
yield gr.ChatMessage(role="assistant", content="-----")
|
| 130 |
|
| 131 |
|
| 132 |
+
text_to_speech_pipe = pipeline(
|
| 133 |
+
task="text-to-speech",
|
| 134 |
+
model="facebook/fastspeech2-en-ljspeech", # "suno/bark-small",
|
| 135 |
+
device = 0 if torch.cuda.is_available() else "cpu",
|
| 136 |
+
torch_dtype=torch.float16,
|
| 137 |
+
)
|
| 138 |
+
tokenizer = AutoTokenizer.from_pretrained("suno/bark-small")
|
| 139 |
+
#print("suno/bark-small tokenizer pad_token_id: ", tokenizer.pad_token_id) # 0
|
| 140 |
+
#print("suno/bark-small tokenizer eos_token_id: ", tokenizer.eos_token_id) # none
|
| 141 |
+
text_to_speech_pipe.model.pad_token_id = tokenizer.pad_token_id
|
| 142 |
+
text_to_speech_pipe.model.eos_token_id = tokenizer.eos_token_id
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
async def play_audio_async(audio_data, sampling_rate):
|
| 146 |
+
loop = asyncio.get_event_loop()
|
| 147 |
+
await loop.run_in_executor(None, sd.play, audio_data, sampling_rate)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
async def speech_to_text(text_in):
|
| 151 |
+
text = f"[clears throat] {text_in}"
|
| 152 |
+
# attention_mask = [1] * len(text.split())
|
| 153 |
+
output = text_to_speech_pipe(text)
|
| 154 |
+
# display(Audio(output["audio"], rate=output["sampling_rate"])) # notebook
|
| 155 |
+
audio = np.array(output["audio"]) #, dtype=np.float16)
|
| 156 |
+
print("Original audio shape:", audio.shape)
|
| 157 |
+
|
| 158 |
+
# Adjust audio shape if necessary:
|
| 159 |
+
if audio.ndim == 1:
|
| 160 |
+
# Mono audio, should be fine. You can check if your device expects stereo.
|
| 161 |
+
print("Mono audio... should be fine. You can check if your device expects stereo.")
|
| 162 |
+
elif audio.ndim == 2:
|
| 163 |
+
# Check if the number of channels is acceptable (e.g., 1 or 2)
|
| 164 |
+
channels = audio.shape[1]
|
| 165 |
+
if channels not in [1, 2]:
|
| 166 |
+
# Try to squeeze extra dimensions
|
| 167 |
+
audio = np.squeeze(audio)
|
| 168 |
+
print("Squeezed audio shape:", audio.shape)
|
| 169 |
+
else:
|
| 170 |
+
# If audio has more dimensions than expected, flatten or reshape as needed
|
| 171 |
+
audio = np.squeeze(audio)
|
| 172 |
+
print("Squeezed audio shape:", audio.shape)
|
| 173 |
+
|
| 174 |
+
# Play the audio using sounddevice
|
| 175 |
+
try:
|
| 176 |
+
# sd.play(audio, output["sampling_rate"])
|
| 177 |
+
# sd.wait() # Wait until audio playback is complete
|
| 178 |
+
await play_audio_async(audio, output["sampling_rate"])
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"Error playing audio: {e}")
|
| 181 |
+
|
| 182 |
+
return True
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def sync_speech_to_text(text_in):
|
| 186 |
+
text = f"[clears throat] {text_in}"
|
| 187 |
+
# attention_mask = [1] * len(text.split())
|
| 188 |
+
output = text_to_speech_pipe(text)
|
| 189 |
+
# display(Audio(output["audio"], rate=output["sampling_rate"])) # notebook
|
| 190 |
+
audio = np.array(output["audio"], dtype=np.float32)
|
| 191 |
+
print("Original audio shape:", audio.shape)
|
| 192 |
+
|
| 193 |
+
# Adjust audio shape if necessary:
|
| 194 |
+
if audio.ndim == 1:
|
| 195 |
+
# Mono audio, should be fine. You can check if your device expects stereo.
|
| 196 |
+
print("Mono audio... should be fine. You can check if your device expects stereo.")
|
| 197 |
+
elif audio.ndim == 2:
|
| 198 |
+
# Check if the number of channels is acceptable (e.g., 1 or 2)
|
| 199 |
+
channels = audio.shape[1]
|
| 200 |
+
if channels not in [1, 2]:
|
| 201 |
+
# Try to squeeze extra dimensions
|
| 202 |
+
audio = np.squeeze(audio)
|
| 203 |
+
print("Squeezed audio shape:", audio.shape)
|
| 204 |
+
else:
|
| 205 |
+
# If audio has more dimensions than expected, flatten or reshape as needed
|
| 206 |
+
audio = np.squeeze(audio)
|
| 207 |
+
print("Squeezed audio shape:", audio.shape)
|
| 208 |
+
|
| 209 |
+
# Play the audio using sounddevice
|
| 210 |
+
try:
|
| 211 |
+
sd.play(audio, output["sampling_rate"])
|
| 212 |
+
sd.wait() # Wait until audio playback is complete
|
| 213 |
+
except Exception as e:
|
| 214 |
+
print(f"Error playing audio: {e}")
|
| 215 |
+
|
| 216 |
+
return True
|
| 217 |
+
|
| 218 |
+
|
| 219 |
def stream_to_gradio(
|
| 220 |
agent,
|
| 221 |
task: str,
|
|
|
|
| 244 |
for message in pull_messages_from_step(
|
| 245 |
step_log,
|
| 246 |
):
|
| 247 |
+
"""
|
| 248 |
+
if isinstance(step_log, ActionStep):
|
| 249 |
+
speach = message.content + ". This was an Action Step."
|
| 250 |
+
if isinstance(step_log, PlanningStep):
|
| 251 |
+
speach = message.content + ". We are done with the Planning Step."
|
| 252 |
+
if isinstance(step_log, TaskStep):
|
| 253 |
+
speach = message.content + ". This is a Task Step."
|
| 254 |
+
if isinstance(step_log, MemoryStep):
|
| 255 |
+
speach = "Memory Step: " + message.content
|
| 256 |
+
"""
|
| 257 |
+
#if "Thought:" in message.content and isinstance(step_log, MemoryStep):
|
| 258 |
+
# asyncio.run(speech_to_text(f"[clears throat] I am thinking that {message.content.replace('Thought:', '')}"))
|
| 259 |
+
# sync_speech_to_text(f"[clears throat] I am thinking that {message.content.replace('Thought:', '')}")
|
| 260 |
+
#pass
|
| 261 |
yield message
|
| 262 |
|
| 263 |
final_answer = step_log # Last log is the run's final_answer
|
agent.json
CHANGED
|
@@ -47,7 +47,6 @@
|
|
| 47 |
"statistics",
|
| 48 |
"queue",
|
| 49 |
"time",
|
| 50 |
-
"collections"
|
| 51 |
-
"re"
|
| 52 |
]
|
| 53 |
}
|
|
|
|
| 47 |
"statistics",
|
| 48 |
"queue",
|
| 49 |
"time",
|
| 50 |
+
"collections"
|
|
|
|
| 51 |
]
|
| 52 |
}
|
app.py
CHANGED
|
@@ -24,7 +24,6 @@ from datetime import datetime
|
|
| 24 |
from skimage import io
|
| 25 |
from PIL import Image
|
| 26 |
from typing import Optional, Tuple
|
| 27 |
-
from IPython.display import Audio, display
|
| 28 |
|
| 29 |
from opentelemetry.sdk.trace import TracerProvider
|
| 30 |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
|
|
@@ -40,6 +39,7 @@ from langchain_openai import OpenAI
|
|
| 40 |
from io import BytesIO
|
| 41 |
from time import sleep
|
| 42 |
|
|
|
|
| 43 |
from smolagents.agents import ActionStep
|
| 44 |
from smolagents.cli import load_model
|
| 45 |
from smolagents import (
|
|
@@ -59,6 +59,8 @@ from smolagents import (
|
|
| 59 |
# load .env vars
|
| 60 |
load_dotenv()
|
| 61 |
|
|
|
|
|
|
|
| 62 |
# fast prototyping tools
|
| 63 |
@tool
|
| 64 |
def get_current_time_in_timezone(timezone: str) -> str:
|
|
@@ -203,10 +205,24 @@ text_to_speech_pipe = pipeline(
|
|
| 203 |
)
|
| 204 |
text_to_speech_pipe.model.enable_cpu_offload()
|
| 205 |
text_to_speech_pipe.model.use_flash_attention_2=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
def speech_to_text(final_answer_text, agent_memory):
|
| 208 |
-
text = f"[clears throat] {final_answer_text}"
|
|
|
|
|
|
|
|
|
|
| 209 |
output = text_to_speech_pipe(text)
|
|
|
|
| 210 |
# display(Audio(output["audio"], rate=output["sampling_rate"])) # notebook
|
| 211 |
audio = np.array(output["audio"], dtype=np.float32)
|
| 212 |
print("Original audio shape:", audio.shape)
|
|
@@ -333,6 +349,7 @@ agent = CodeAgent(
|
|
| 333 |
"numpy",
|
| 334 |
"requests",
|
| 335 |
"helium",
|
|
|
|
| 336 |
],
|
| 337 |
# I could also add the authorized_imports from a LIST_SAFE_MODULES
|
| 338 |
)
|
|
|
|
| 24 |
from skimage import io
|
| 25 |
from PIL import Image
|
| 26 |
from typing import Optional, Tuple
|
|
|
|
| 27 |
|
| 28 |
from opentelemetry.sdk.trace import TracerProvider
|
| 29 |
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
|
|
|
|
| 39 |
from io import BytesIO
|
| 40 |
from time import sleep
|
| 41 |
|
| 42 |
+
from smolagents.utils import BASE_BUILTIN_MODULES
|
| 43 |
from smolagents.agents import ActionStep
|
| 44 |
from smolagents.cli import load_model
|
| 45 |
from smolagents import (
|
|
|
|
| 59 |
# load .env vars
|
| 60 |
load_dotenv()
|
| 61 |
|
| 62 |
+
BASE_BUILTIN_MODULES.remove("re")
|
| 63 |
+
|
| 64 |
# fast prototyping tools
|
| 65 |
@tool
|
| 66 |
def get_current_time_in_timezone(timezone: str) -> str:
|
|
|
|
| 205 |
)
|
| 206 |
text_to_speech_pipe.model.enable_cpu_offload()
|
| 207 |
text_to_speech_pipe.model.use_flash_attention_2=True
|
| 208 |
+
text_to_speech_pipe.model.pad_token_id=0 # 50257
|
| 209 |
+
|
| 210 |
+
from transformers import AutoTokenizer
|
| 211 |
+
|
| 212 |
+
tokenizer = AutoTokenizer.from_pretrained("suno/bark-small")
|
| 213 |
+
#print("suno/bark-small tokenizer pad_token_id: ", tokenizer.pad_token_id) # 0
|
| 214 |
+
#print("suno/bark-small tokenizer eos_token_id: ", tokenizer.eos_token_id) # none
|
| 215 |
+
text_to_speech_pipe.model.pad_token_id = tokenizer.pad_token_id
|
| 216 |
+
text_to_speech_pipe.model.eos_token_id = tokenizer.eos_token_id
|
| 217 |
+
|
| 218 |
|
| 219 |
def speech_to_text(final_answer_text, agent_memory):
|
| 220 |
+
text = f"[clears throat] Here is the final answer: {final_answer_text}"
|
| 221 |
+
# attention_mask = [1] * len(text.split()) # Create an attention mask for your text
|
| 222 |
+
|
| 223 |
+
# Run the pipeline with the attention mask
|
| 224 |
output = text_to_speech_pipe(text)
|
| 225 |
+
|
| 226 |
# display(Audio(output["audio"], rate=output["sampling_rate"])) # notebook
|
| 227 |
audio = np.array(output["audio"], dtype=np.float32)
|
| 228 |
print("Original audio shape:", audio.shape)
|
|
|
|
| 349 |
"numpy",
|
| 350 |
"requests",
|
| 351 |
"helium",
|
| 352 |
+
"bs4"
|
| 353 |
],
|
| 354 |
# I could also add the authorized_imports from a LIST_SAFE_MODULES
|
| 355 |
)
|
requirements.txt
CHANGED
|
@@ -4,18 +4,31 @@ requests
|
|
| 4 |
duckduckgo_search
|
| 5 |
pandas
|
| 6 |
transformers
|
| 7 |
-
|
| 8 |
torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
langchain
|
| 10 |
openai
|
| 11 |
-
|
| 12 |
langchain-community
|
| 13 |
google-search-results
|
| 14 |
smolagents[transformers]
|
|
|
|
|
|
|
| 15 |
scikit-image
|
|
|
|
|
|
|
| 16 |
pycountry
|
| 17 |
opentelemetry-sdk
|
| 18 |
opentelemetry-exporter-otlp
|
| 19 |
openinference-instrumentation-smolagents
|
|
|
|
|
|
|
| 20 |
python-dotenv
|
| 21 |
-
langchain-openai
|
|
|
|
| 4 |
duckduckgo_search
|
| 5 |
pandas
|
| 6 |
transformers
|
| 7 |
+
rank_bm25
|
| 8 |
torch
|
| 9 |
+
torchvision
|
| 10 |
+
torchaudio
|
| 11 |
+
optimum
|
| 12 |
+
accelerate
|
| 13 |
+
beautifulsoup4
|
| 14 |
+
sounddevice
|
| 15 |
+
optimum
|
| 16 |
langchain
|
| 17 |
openai
|
| 18 |
+
datasets
|
| 19 |
langchain-community
|
| 20 |
google-search-results
|
| 21 |
smolagents[transformers]
|
| 22 |
+
smoloagents[e2b]
|
| 23 |
+
smolagents[litellm]
|
| 24 |
scikit-image
|
| 25 |
+
pillow
|
| 26 |
+
duckduckgo-search
|
| 27 |
pycountry
|
| 28 |
opentelemetry-sdk
|
| 29 |
opentelemetry-exporter-otlp
|
| 30 |
openinference-instrumentation-smolagents
|
| 31 |
+
helium
|
| 32 |
+
selenium
|
| 33 |
python-dotenv
|
| 34 |
+
langchain-openai
|