Spaces:
Sleeping
Sleeping
File size: 4,050 Bytes
0291473 d0713cc 0291473 4af33c5 0291473 64ba1a9 0291473 24b2aa0 0291473 a43e51c 0291473 24b2aa0 805ddf8 4af33c5 d0713cc 0a716a3 431cf64 24b2aa0 431cf64 4518a48 a43e51c 431cf64 ba020f3 5d8dc18 f4a055e f7ae953 083778b aeb80b8 3711db1 a111e33 3711db1 d4856a0 e917bde d4856a0 3711db1 c4f1532 a61f407 36a46c2 e917bde a61f407 e917bde 3711db1 41b2f0f 9e7e24e b1d070d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
import gradio as gr
from diffusers import AudioLDMControlNetPipeline, ControlNetModel
import os
from pretty_midi import PrettyMIDI
from tempfile import _TemporaryFileWrapper
import torch
import torchaudio
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained(
"lauraibnz/midi-audioldm", torch_dtype=torch_dtype)
pipe = AudioLDMControlNetPipeline.from_pretrained(
"cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype)
pipe = pipe.to(device)
generator = torch.Generator(device)
def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=5, random_seed=0, controlnet_conditioning_scale=1, num_inference_steps=20, guess_mode=False):
if isinstance(midi_file, _TemporaryFileWrapper):
midi_file = midi_file.name
midi = PrettyMIDI(midi_file)
audio = pipe(
prompt,
negative_prompt=negative_prompt,
midi=midi,
audio_length_in_s=audio_length_in_s,
num_inference_steps=num_inference_steps,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guess_mode=guess_mode,
generator=generator.manual_seed(int(random_seed)),
)
return (16000, audio.audios.T)
with gr.Blocks(title="🎹 MIDI-AudioLDM", theme=gr.themes.Base(text_size=gr.themes.sizes.text_md, font=[gr.themes.GoogleFont("Nunito Sans")])) as demo:
gr.HTML(
"""
<h1 align="center"; size="16">🎹 MIDI-AudioLDM </h1>
""")
gr.Markdown(
"""
MIDI-AudioLDM is a MIDI-conditioned text-to-audio model based on the project [AudioLDM](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation). The model has been conditioned using the ControlNet architecture and has been developed within Hugging Face’s [🧨 Diffusers](https://huggingface.co/docs/diffusers/) framework. Once trained, MIDI-AudioLDM accepts a MIDI file and a text prompt as inputs and returns an audio file, which is an interpretation of the MIDI based on the given text description. This enables detailed control over different musical aspects such as notes, mood and timbre.
""")
with gr.Row():
with gr.Column(variant='panel'):
midi = gr.File(label="midi file", file_types=[".mid"], info="Load the MIDI file that you want to use as conditioning.")
prompt = gr.Textbox(label="prompt", info="Enter a descriptive text prompt.")
with gr.Column(variant='panel'):
audio = gr.Audio(label="audio")
with gr.Accordion("Advanced Settings", open=False):
neg_prompt = gr.Textbox(label="negative prompt", info="Enter a negative prompt not to guide the audio generation.")
duration = gr.Slider(0, 30, value=5, step=5, label="duration (seconds)", info="Modify the duration of the output audio file.")
seed = gr.Number(value=42, label="seed", info="Change the random seed for a different generation result.")
cond = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale", info="Enter a value between 0 and 1. The larger the more it will take the conditioning into account.")
inf = gr.Slider(0, 50, value=20, step=0.1, label="inference steps", info="Edit the number of denoising steps. More inference steps usually leads to better but slower results.")
guess = gr.Checkbox(label="guess mode", info="If true, the model will try to recognize the content of the conditioning without the need of a text prompt.")
btn = gr.Button("Generate")
btn.click(predict, inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guess], outputs=[audio])
gr.Examples(examples=[["S00.mid", "piano", "", 10, 25, 1.0, 20, False], ["S00.mid", "violin", "", 10, 25, 1.0, 20, False], ["S00.mid", "woman singing", "", 10, 25, 0.8, 20, False]], inputs=[midi, prompt, neg_prompt, duration, seed, cond, inf, guess], fn=predict, outputs=audio, cache_examples=True)
demo.launch() |