Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -14,14 +14,30 @@ controlnet = ControlNetModel.from_pretrained("lauraibnz/midi-audioldm", torch_dt 
     | 
|
| 14 | 
         
             
            pipe = AudioLDMControlNetPipeline.from_pretrained("cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype)
         
     | 
| 15 | 
         
             
            pipe = pipe.to(device)
         
     | 
| 16 | 
         | 
| 17 | 
         
            -
            def predict(midi_file=None, prompt="", audio_length_in_s=5, controlnet_conditioning_scale=1, num_inference_steps=20):
         
     | 
| 18 | 
         
             
                if midi_file:
         
     | 
| 19 | 
         
             
                    midi_file = midi_file.name
         
     | 
| 20 | 
         
             
                else:
         
     | 
| 21 | 
         
             
                    midi_file = "test.mid"
         
     | 
| 22 | 
         
             
                midi = PrettyMIDI(midi_file)
         
     | 
| 23 | 
         
            -
                audio = pipe( 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 24 | 
         
             
                return (16000, audio.audios.T)
         
     | 
| 25 | 
         | 
| 26 | 
         
            -
            demo = gr.Interface(fn=predict, inputs=[ 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 27 | 
         
             
            demo.launch()
         
     | 
| 
         | 
|
| 14 | 
         
             
            pipe = AudioLDMControlNetPipeline.from_pretrained("cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype)
         
     | 
| 15 | 
         
             
            pipe = pipe.to(device)
         
     | 
| 16 | 
         | 
| 17 | 
         
            +
            def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=5, controlnet_conditioning_scale=1, num_inference_steps=20, guess_mode=False):
         
     | 
| 18 | 
         
             
                if midi_file:
         
     | 
| 19 | 
         
             
                    midi_file = midi_file.name
         
     | 
| 20 | 
         
             
                else:
         
     | 
| 21 | 
         
             
                    midi_file = "test.mid"
         
     | 
| 22 | 
         
             
                midi = PrettyMIDI(midi_file)
         
     | 
| 23 | 
         
            +
                audio = pipe(
         
     | 
| 24 | 
         
            +
                    prompt,
         
     | 
| 25 | 
         
            +
                    negative_prompt=negative_prompt,
         
     | 
| 26 | 
         
            +
                    midi=midi, 
         
     | 
| 27 | 
         
            +
                    audio_length_in_s=audio_length_in_s, 
         
     | 
| 28 | 
         
            +
                    num_inference_steps=num_inference_steps, 
         
     | 
| 29 | 
         
            +
                    controlnet_conditioning_scale=float(controlnet_conditioning_scale),
         
     | 
| 30 | 
         
            +
                    guess_mode=guess_mode
         
     | 
| 31 | 
         
            +
                )
         
     | 
| 32 | 
         
             
                return (16000, audio.audios.T)
         
     | 
| 33 | 
         | 
| 34 | 
         
            +
            demo = gr.Interface(fn=predict, inputs=[
         
     | 
| 35 | 
         
            +
                gr.File(file_types=[".mid"]), 
         
     | 
| 36 | 
         
            +
                "text",
         
     | 
| 37 | 
         
            +
                gr.Textbox(label="negative prompt")
         
     | 
| 38 | 
         
            +
                gr.Slider(0, 30, value=5, step=5, label="duration (seconds)"), 
         
     | 
| 39 | 
         
            +
                gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale"),
         
     | 
| 40 | 
         
            +
                gr.Slider(0, 50, value=20, step=0.1, label="inference steps"),
         
     | 
| 41 | 
         
            +
                gr.Checkbox(label="guess mode")
         
     | 
| 42 | 
         
            +
            ], outputs="audio")
         
     | 
| 43 | 
         
             
            demo.launch()
         
     |