Spaces:
Sleeping
Sleeping
File size: 2,246 Bytes
0291473 431cf64 f0a6291 0a716a3 431cf64 4518a48 431cf64 ba020f3 5d8dc18 431cf64 4518a48 a053235 431cf64 0d7d6c0 709af2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from diffusers import AudioLDMControlNetPipeline, ControlNetModel
from pretty_midi import PrettyMIDI
import torch
if torch.cuda.is_available():
device = "cuda"
torch_dtype = torch.float16
else:
device = "cpu"
torch_dtype = torch.float32
controlnet = ControlNetModel.from_pretrained("lauraibnz/midi-audioldm", torch_dtype=torch_dtype)
pipe = AudioLDMControlNetPipeline.from_pretrained("cvssp/audioldm-m-full", controlnet=controlnet, torch_dtype=torch_dtype)
pipe = pipe.to(device)
def predict(midi_file=None, prompt="", negative_prompt="", audio_length_in_s=5, controlnet_conditioning_scale=1, num_inference_steps=20, guess_mode=False):
midi_file = midi_file.name
midi = PrettyMIDI(midi_file)
audio = pipe(
prompt,
negative_prompt=negative_prompt,
midi=midi,
audio_length_in_s=audio_length_in_s,
num_inference_steps=num_inference_steps,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
guess_mode=guess_mode,
)
return (16000, audio.audios.T)
demo = gr.Interface(fn=predict, inputs=[
gr.File(file_types=[".mid"]),
"text",
gr.Textbox(label="negative prompt"),
gr.Slider(0, 30, value=5, step=5, label="duration (seconds)"),
gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="conditioning scale"),
gr.Slider(0, 50, value=20, step=0.1, label="inference steps"),
gr.Checkbox(label="guess mode")
], outputs="audio", examples=[["S00.mid", "piano", "", 10, 1.0, 20, False]], cache_examples=True, title="🎹 MIDI-AudioLDM", description="MIDI-AudioLDM is a MIDI-conditioned text-to-audio model based on the project [AudioLDM](https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation). The model has been conditioned using the ControlNet architecture and has been developed within Hugging Face’s [🧨 Diffusers](https://huggingface.co/docs/diffusers/) framework. Once trained, MIDI-AudioLDM accepts a MIDI file and a text prompt as inputs and returns an audio file, which is an interpretation of the MIDI based on the given text description. This enables detailed control over different musical aspects such as notes, mood and timbre.", theme=gr.themes.Base())
demo.launch() |