MLRC_Bench / README.md
Armeddinosaur's picture
updating readme
8f9396c
|
raw
history blame
1.95 kB
---
title: MLRC-BENCH
emoji: 📊
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: 1.39.0
app_file: app.py
pinned: false
license: cc-by-4.0
---
## Installation & Setup
1. Clone the repository
```bash
git clone https://huggingface.co/spaces/launch/MLRC_Bench
cd MLRC_Bench
```
2. Setup virtual env and install the required dependencies
```bash
python -m venv env
source env/bin/activate
pip install -r requirements.txt
```
3. Run the application
```bash
streamlit run app.py
```
### Updating Metrics
To update the table, update the respective metric file in `src/data/metrics` directory
### Updating Text
To update the tab on Benchmark details, make changes to the the following file - `src/components/tasks.py`
To update the metric definitions, make changes to the following file - `src/components/tasks.py`
### Adding New Metrics
To add a new metric:
1. Create a new JSON data file in the `src/data/metrics/` directory (e.g., `src/data/metrics/new_metric.json`)
2. Update `metrics_config` in `src/utils/config.py`:
```python
metrics_config = {
"Margin to Human": { ... },
"New Metric Name": {
"file": "src/data/metrics/new_metric.json",
"description": "Description of the new metric",
"min_value": 0,
"max_value": 100,
"color_map": "viridis"
}
}
```
3. Ensure your metric JSON file follows the same format as existing metrics:
```json
{
"task-name": {
"model-name-1": value,
"model-name-2": value
},
"another-task": {
"model-name-1": value,
"model-name-2": value
}
}
```
### Adding New Agent Types
To add new agent types:
1. Update `model_categories` in `src/utils/config.py`:
```python
model_categories = {
"Existing Model": "Category",
"New Model Name": "New Category"
}
```
## License
[MIT License](LICENSE)