MLRC_Bench / README.md
Armeddinosaur's picture
updating readme
eea50e2
|
raw
history blame
2.51 kB
metadata
title: MLRC-BENCH
emoji: 📊
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: 1.39.0
app_file: app.py
pinned: false
license: cc-by-4.0

Overview

This application provides a visual leaderboard for comparing AI model performance on challenging Machine Learning Research Competition problems. It uses Streamlit to create an interactive web interface with filtering options, allowing users to select specific models and tasks for comparison.

The leaderboard uses the MLRC-BENCH benchmark, which measures what percentage of the top human-to-baseline performance gap an agent can close. Success is defined as achieving at least 5% of the margin by which the top human solution surpasses the baseline.

Installation & Setup

  1. Clone the repository
git clone https://huggingface.co/spaces/launch/MLRC_Bench
cd MLRC_Bench
  1. Setup virtual env and install the required dependencies

    python -m venv env
    source env/bin/activate
    pip install -r requirements.txt
    
  2. Run the application

    streamlit run app.py
    

Updating Metrics

To update the table, update the respective metric file in src/data/metrics directory

Updating Text

To update the tab on Benchmark details, make changes to the the following file - src/components/tasks.py To update the metric definitions, make changes to the following file - src/components/tasks.py

Adding New Metrics

To add a new metric:

  1. Create a new JSON data file in the src/data/metrics/ directory (e.g., src/data/metrics/new_metric.json)

  2. Update metrics_config in src/utils/config.py:

    metrics_config = {
        "Margin to Human": { ... },
        "New Metric Name": {
            "file": "src/data/metrics/new_metric.json",
            "description": "Description of the new metric",
            "min_value": 0,
            "max_value": 100,
            "color_map": "viridis"
        }
    }
    
  3. Ensure your metric JSON file follows the same format as existing metrics:

    {
      "task-name": {
        "model-name-1": value,
        "model-name-2": value
      },
      "another-task": {
        "model-name-1": value,
        "model-name-2": value
      }
    }
    

Adding New Agent Types

To add new agent types:

  1. Update model_categories in src/utils/config.py:
    model_categories = {
        "Existing Model": "Category",
        "New Model Name": "New Category"
    }
    

License

MIT License