Spaces:
Running
title: MLRC-BENCH
emoji: 📊
colorFrom: green
colorTo: blue
sdk: streamlit
sdk_version: 1.39.0
app_file: app.py
pinned: false
license: cc-by-4.0
Overview
This application provides a visual leaderboard for comparing AI model performance on challenging Machine Learning Research Competition problems. It uses Streamlit to create an interactive web interface with filtering options, allowing users to select specific models and tasks for comparison.
The leaderboard uses the MLRC-BENCH benchmark, which measures what percentage of the top human-to-baseline performance gap an agent can close. Success is defined as achieving at least 5% of the margin by which the top human solution surpasses the baseline.
Installation & Setup
- Clone the repository
git clone https://huggingface.co/spaces/launch/MLRC_Bench
cd MLRC_Bench
Setup virtual env and install the required dependencies
python -m venv env source env/bin/activate pip install -r requirements.txt
Run the application
streamlit run app.py
Updating Metrics
To update the table, update the respective metric file in src/data/metrics
directory
Updating Text
To update the tab on Benchmark details, make changes to the the following file - src/components/tasks.py
To update the metric definitions, make changes to the following file - src/components/tasks.py
Adding New Metrics
To add a new metric:
Create a new JSON data file in the
src/data/metrics/
directory (e.g.,src/data/metrics/new_metric.json
)Update
metrics_config
insrc/utils/config.py
:metrics_config = { "Margin to Human": { ... }, "New Metric Name": { "file": "src/data/metrics/new_metric.json", "description": "Description of the new metric", "min_value": 0, "max_value": 100, "color_map": "viridis" } }
Ensure your metric JSON file follows the same format as existing metrics:
{ "task-name": { "model-name-1": value, "model-name-2": value }, "another-task": { "model-name-1": value, "model-name-2": value } }
Adding New Agent Types
To add new agent types:
- Update
model_categories
insrc/utils/config.py
:model_categories = { "Existing Model": "Category", "New Model Name": "New Category" }