Spaces:
Sleeping
Sleeping
File size: 5,085 Bytes
4d6e8c2 a8c9010 3a14b2c 8ceca59 a8c9010 4d6e8c2 70f5f26 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 8ceca59 4d6e8c2 70f5f26 a8c9010 d329a6c 3a14b2c a8c9010 d329a6c a8c9010 4d6e8c2 a8c9010 6a70170 d329a6c 6a70170 d329a6c 0de3206 6a70170 6152e94 33cdcfa 3a14b2c a8c9010 3a14b2c 42a0f5f 3a14b2c 42a0f5f 3a14b2c 42a0f5f 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
#packages needed for inference
from sentence_transformers import SentenceTransformer
from xgboost import XGBClassifier
import pickle
import torch
import os
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Set the device to MPS (if available)
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
print(f"Using device: {device}")
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # You can use other Sentence Transformers models as needed
sentence_model = SentenceTransformer(model_name)
# Convert each sentence into a vector representation (embedding)
embeddings = sentence_model.encode(test_dataset['quote'], convert_to_tensor=True)
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
"""
from torch import nn, optim
class SimpleNN2(nn.Module):
def __init__(self, input_dim, output_dim):
super(SimpleNN2, self).__init__()
self.fc1 = nn.Linear(input_dim, 128) # Reduce hidden units
self.fc2 = nn.Linear(128, 64) # Further reduce units
self.fc3 = nn.Linear(64, output_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.3) # Add dropout
self.batch_norm1 = nn.BatchNorm1d(128)
self.batch_norm2 = nn.BatchNorm1d(64)
def forward(self, x):
x = self.relu(self.batch_norm1(self.fc1(x)))
x = self.dropout(x) # Apply dropout
x = self.relu(self.batch_norm2(self.fc2(x)))
x = self.dropout(x) # Apply dropout
x = self.fc3(x) # Output raw logits
return x
"""
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
# model_nn = torch.load(os.path.join(current_dir,"model_nn.pth"), map_location=device)
model_nn = torch.jit.load(os.path.join(current_dir,"model_nn_scripted.pth"), map_location=device)
# Set the model to evaluation mode
model_nn.eval()
# Make predictions
with torch.no_grad():
outputs = model_nn(embeddings)
_, predicted = torch.max(outputs, 1) # Get the class with the highest score
# Decode the predictions back to original labels using label_encoder
predictions = predicted.cpu().numpy()
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |