Spaces:
Sleeping
Sleeping
fixed errors
Browse files- tasks/models/model_nn.pth +3 -0
- tasks/text.py +31 -13
tasks/models/model_nn.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45fab4b08e520f45893c39b8a94c1d444f59268393fd06635d3bb4d36b0b16e2
|
3 |
+
size 439226
|
tasks/text.py
CHANGED
@@ -61,32 +61,50 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
61 |
#--------------------------------------------------------------------------------------------
|
62 |
# YOUR MODEL INFERENCE CODE HERE
|
63 |
|
64 |
-
#
|
65 |
-
|
|
|
|
|
66 |
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # You can use other Sentence Transformers models as needed
|
67 |
sentence_model = SentenceTransformer(model_name)
|
68 |
|
69 |
# Convert each sentence into a vector representation (embedding)
|
70 |
-
embeddings = sentence_model.encode(test_dataset['quote'])
|
71 |
|
72 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
73 |
-
#--------------------------------------------------------------------------------------------
|
74 |
-
|
75 |
# Make random predictions (placeholder for actual model inference)
|
76 |
true_labels = test_dataset["label"]
|
77 |
|
78 |
-
|
79 |
-
#
|
80 |
-
#with open("models/stella_400_xgb_500.pkl",'rb') as f:
|
81 |
# xgbclassifier = pickle.load(f)
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# Set the model to evaluation mode
|
86 |
model_nn.eval()
|
87 |
|
88 |
-
#make inference
|
89 |
-
#predictions = xgbclassifier.predict(embeddings)
|
90 |
|
91 |
# Make predictions
|
92 |
with torch.no_grad():
|
|
|
61 |
#--------------------------------------------------------------------------------------------
|
62 |
# YOUR MODEL INFERENCE CODE HERE
|
63 |
|
64 |
+
# Set the device to MPS (if available)
|
65 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
|
66 |
+
print(f"Using device: {device}")
|
67 |
+
|
68 |
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # You can use other Sentence Transformers models as needed
|
69 |
sentence_model = SentenceTransformer(model_name)
|
70 |
|
71 |
# Convert each sentence into a vector representation (embedding)
|
72 |
+
embeddings = sentence_model.encode(test_dataset['quote'], convert_to_tensor=True)
|
73 |
|
|
|
|
|
|
|
74 |
# Make random predictions (placeholder for actual model inference)
|
75 |
true_labels = test_dataset["label"]
|
76 |
|
77 |
+
# load the xgboost model
|
78 |
+
# with open("models/stella_400_xgb_500.pkl",'rb') as f:
|
|
|
79 |
# xgbclassifier = pickle.load(f)
|
80 |
+
from torch import nn, optim
|
81 |
+
|
82 |
+
class SimpleNN2(nn.Module):
|
83 |
+
def __init__(self, input_dim, output_dim):
|
84 |
+
super(SimpleNN2, self).__init__()
|
85 |
+
self.fc1 = nn.Linear(input_dim, 128) # Reduce hidden units
|
86 |
+
self.fc2 = nn.Linear(128, 64) # Further reduce units
|
87 |
+
self.fc3 = nn.Linear(64, output_dim)
|
88 |
+
self.relu = nn.ReLU()
|
89 |
+
self.dropout = nn.Dropout(0.3) # Add dropout
|
90 |
+
self.batch_norm1 = nn.BatchNorm1d(128)
|
91 |
+
self.batch_norm2 = nn.BatchNorm1d(64)
|
92 |
+
|
93 |
+
def forward(self, x):
|
94 |
+
x = self.relu(self.batch_norm1(self.fc1(x)))
|
95 |
+
x = self.dropout(x) # Apply dropout
|
96 |
+
x = self.relu(self.batch_norm2(self.fc2(x)))
|
97 |
+
x = self.dropout(x) # Apply dropout
|
98 |
+
x = self.fc3(x) # Output raw logits
|
99 |
+
return x
|
100 |
+
|
101 |
+
model_nn = torch.load("../tasks/models/model_nn.pth", map_location=device)
|
102 |
|
103 |
# Set the model to evaluation mode
|
104 |
model_nn.eval()
|
105 |
|
106 |
+
# make inference
|
107 |
+
# predictions = xgbclassifier.predict(embeddings)
|
108 |
|
109 |
# Make predictions
|
110 |
with torch.no_grad():
|