Spaces:
Running
Running
import os.path | |
import logging | |
import time | |
from collections import OrderedDict | |
import torch | |
from utils import utils_logger | |
from utils import utils_image as util | |
# from utils import utils_model | |
''' | |
This code can help you to calculate: | |
`FLOPs`, `#Params`, `Runtime`, `#Activations`, `#Conv`, and `Max Memory Allocated`. | |
- `#Params' denotes the total number of parameters. | |
- `FLOPs' is the abbreviation for floating point operations. | |
- `#Activations' measures the number of elements of all outputs of convolutional layers. | |
- `Memory' represents maximum GPU memory consumption according to the PyTorch function torch.cuda.max_memory_allocated(). | |
- `#Conv' represents the number of convolutional layers. | |
- `FLOPs', `#Activations', and `Memory' are tested on an LR image of size 256x256. | |
For more information, please refer to ECCVW paper "AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results". | |
# If you use this code, please consider the following citations: | |
@inproceedings{zhang2020aim, | |
title={AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results}, | |
author={Kai Zhang and Martin Danelljan and Yawei Li and Radu Timofte and others}, | |
booktitle={European Conference on Computer Vision Workshops}, | |
year={2020} | |
} | |
@inproceedings{zhang2019aim, | |
title={AIM 2019 Challenge on Constrained Super-Resolution: Methods and Results}, | |
author={Kai Zhang and Shuhang Gu and Radu Timofte and others}, | |
booktitle={IEEE International Conference on Computer Vision Workshops}, | |
year={2019} | |
} | |
CuDNN (https://developer.nvidia.com/rdp/cudnn-archive) should be installed. | |
For `Memery` and `Runtime`, set 'print_modelsummary = False' and 'save_results = False'. | |
''' | |
def main(): | |
utils_logger.logger_info('efficientsr_challenge', log_path='efficientsr_challenge.log') | |
logger = logging.getLogger('efficientsr_challenge') | |
# print(torch.__version__) # pytorch version | |
# print(torch.version.cuda) # cuda version | |
# print(torch.backends.cudnn.version()) # cudnn version | |
# -------------------------------- | |
# basic settings | |
# -------------------------------- | |
model_names = ['msrresnet', 'imdn'] | |
model_id = 1 # set the model name | |
sf = 4 | |
model_name = model_names[model_id] | |
logger.info('{:>16s} : {:s}'.format('Model Name', model_name)) | |
testsets = 'testsets' # set path of testsets | |
testset_L = 'DIV2K_valid_LR' # set current testing dataset; 'DIV2K_test_LR' | |
testset_L = 'set12' | |
save_results = True | |
print_modelsummary = True # set False when calculating `Max Memery` and `Runtime` | |
torch.cuda.set_device(0) # set GPU ID | |
logger.info('{:>16s} : {:<d}'.format('GPU ID', torch.cuda.current_device())) | |
torch.cuda.empty_cache() | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# -------------------------------- | |
# define network and load model | |
# -------------------------------- | |
if model_name == 'msrresnet': | |
from models.network_msrresnet import MSRResNet1 as net | |
model = net(in_nc=3, out_nc=3, nc=64, nb=16, upscale=4) # define network | |
model_path = os.path.join('model_zoo', 'msrresnet_x4_psnr.pth') # set model path | |
elif model_name == 'imdn': | |
from models.network_imdn import IMDN as net | |
model = net(in_nc=3, out_nc=3, nc=64, nb=8, upscale=4, act_mode='L', upsample_mode='pixelshuffle') # define network | |
model_path = os.path.join('model_zoo', 'imdn_x4.pth') # set model path | |
model.load_state_dict(torch.load(model_path), strict=True) | |
model.eval() | |
for k, v in model.named_parameters(): | |
v.requires_grad = False | |
model = model.to(device) | |
# -------------------------------- | |
# print model summary | |
# -------------------------------- | |
if print_modelsummary: | |
from utils.utils_modelsummary import get_model_activation, get_model_flops | |
input_dim = (3, 256, 256) # set the input dimension | |
activations, num_conv2d = get_model_activation(model, input_dim) | |
logger.info('{:>16s} : {:<.4f} [M]'.format('#Activations', activations/10**6)) | |
logger.info('{:>16s} : {:<d}'.format('#Conv2d', num_conv2d)) | |
flops = get_model_flops(model, input_dim, False) | |
logger.info('{:>16s} : {:<.4f} [G]'.format('FLOPs', flops/10**9)) | |
num_parameters = sum(map(lambda x: x.numel(), model.parameters())) | |
logger.info('{:>16s} : {:<.4f} [M]'.format('#Params', num_parameters/10**6)) | |
# -------------------------------- | |
# read image | |
# -------------------------------- | |
L_path = os.path.join(testsets, testset_L) | |
E_path = os.path.join(testsets, testset_L+'_'+model_name) | |
util.mkdir(E_path) | |
# record runtime | |
test_results = OrderedDict() | |
test_results['runtime'] = [] | |
logger.info('{:>16s} : {:s}'.format('Input Path', L_path)) | |
logger.info('{:>16s} : {:s}'.format('Output Path', E_path)) | |
idx = 0 | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
for img in util.get_image_paths(L_path): | |
# -------------------------------- | |
# (1) img_L | |
# -------------------------------- | |
idx += 1 | |
img_name, ext = os.path.splitext(os.path.basename(img)) | |
logger.info('{:->4d}--> {:>10s}'.format(idx, img_name+ext)) | |
img_L = util.imread_uint(img, n_channels=3) | |
img_L = util.uint2tensor4(img_L) | |
torch.cuda.empty_cache() | |
img_L = img_L.to(device) | |
start.record() | |
img_E = model(img_L) | |
# img_E = utils_model.test_mode(model, img_L, mode=2, min_size=480, sf=sf) # use this to avoid 'out of memory' issue. | |
# logger.info('{:>16s} : {:<.3f} [M]'.format('Max Memery', torch.cuda.max_memory_allocated(torch.cuda.current_device())/1024**2)) # Memery | |
end.record() | |
torch.cuda.synchronize() | |
test_results['runtime'].append(start.elapsed_time(end)) # milliseconds | |
# torch.cuda.synchronize() | |
# start = time.time() | |
# img_E = model(img_L) | |
# torch.cuda.synchronize() | |
# end = time.time() | |
# test_results['runtime'].append(end-start) # seconds | |
# -------------------------------- | |
# (2) img_E | |
# -------------------------------- | |
img_E = util.tensor2uint(img_E) | |
if save_results: | |
util.imsave(img_E, os.path.join(E_path, img_name+ext)) | |
ave_runtime = sum(test_results['runtime']) / len(test_results['runtime']) / 1000.0 | |
logger.info('------> Average runtime of ({}) is : {:.6f} seconds'.format(L_path, ave_runtime)) | |
if __name__ == '__main__': | |
main() | |