Spaces:
Running
Running
import glob | |
import torch | |
from os import path as osp | |
import torch.utils.data as data | |
import utils.utils_video as utils_video | |
class VideoRecurrentTestDataset(data.Dataset): | |
"""Video test dataset for recurrent architectures, which takes LR video | |
frames as input and output corresponding HR video frames. Modified from | |
https://github.com/xinntao/BasicSR/blob/master/basicsr/data/reds_dataset.py | |
Supported datasets: Vid4, REDS4, REDSofficial. | |
More generally, it supports testing dataset with following structures: | |
dataroot | |
βββ subfolder1 | |
βββ frame000 | |
βββ frame001 | |
βββ ... | |
βββ subfolder1 | |
βββ frame000 | |
βββ frame001 | |
βββ ... | |
βββ ... | |
For testing datasets, there is no need to prepare LMDB files. | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
io_backend (dict): IO backend type and other kwarg. | |
cache_data (bool): Whether to cache testing datasets. | |
name (str): Dataset name. | |
meta_info_file (str): The path to the file storing the list of test | |
folders. If not provided, all the folders in the dataroot will | |
be used. | |
num_frame (int): Window size for input frames. | |
padding (str): Padding mode. | |
""" | |
def __init__(self, opt): | |
super(VideoRecurrentTestDataset, self).__init__() | |
self.opt = opt | |
self.cache_data = opt['cache_data'] | |
self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq'] | |
self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []} | |
self.imgs_lq, self.imgs_gt = {}, {} | |
if 'meta_info_file' in opt: | |
with open(opt['meta_info_file'], 'r') as fin: | |
subfolders = [line.split(' ')[0] for line in fin] | |
subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders] | |
subfolders_gt = [osp.join(self.gt_root, key) for key in subfolders] | |
else: | |
subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*'))) | |
subfolders_gt = sorted(glob.glob(osp.join(self.gt_root, '*'))) | |
for subfolder_lq, subfolder_gt in zip(subfolders_lq, subfolders_gt): | |
# get frame list for lq and gt | |
subfolder_name = osp.basename(subfolder_lq) | |
img_paths_lq = sorted(list(utils_video.scandir(subfolder_lq, full_path=True))) | |
img_paths_gt = sorted(list(utils_video.scandir(subfolder_gt, full_path=True))) | |
max_idx = len(img_paths_lq) | |
assert max_idx == len(img_paths_gt), (f'Different number of images in lq ({max_idx})' | |
f' and gt folders ({len(img_paths_gt)})') | |
self.data_info['lq_path'].extend(img_paths_lq) | |
self.data_info['gt_path'].extend(img_paths_gt) | |
self.data_info['folder'].extend([subfolder_name] * max_idx) | |
for i in range(max_idx): | |
self.data_info['idx'].append(f'{i}/{max_idx}') | |
border_l = [0] * max_idx | |
for i in range(self.opt['num_frame'] // 2): | |
border_l[i] = 1 | |
border_l[max_idx - i - 1] = 1 | |
self.data_info['border'].extend(border_l) | |
# cache data or save the frame list | |
if self.cache_data: | |
print(f'Cache {subfolder_name} for VideoTestDataset...') | |
self.imgs_lq[subfolder_name] = utils_video.read_img_seq(img_paths_lq) | |
self.imgs_gt[subfolder_name] = utils_video.read_img_seq(img_paths_gt) | |
else: | |
self.imgs_lq[subfolder_name] = img_paths_lq | |
self.imgs_gt[subfolder_name] = img_paths_gt | |
# Find unique folder strings | |
self.folders = sorted(list(set(self.data_info['folder']))) | |
self.sigma = opt['sigma'] / 255. if 'sigma' in opt else 0 # for non-blind video denoising | |
def __getitem__(self, index): | |
folder = self.folders[index] | |
if self.sigma: | |
# for non-blind video denoising | |
if self.cache_data: | |
imgs_gt = self.imgs_gt[folder] | |
else: | |
imgs_gt = utils_video.read_img_seq(self.imgs_gt[folder]) | |
torch.manual_seed(0) | |
noise_level = torch.ones((1, 1, 1, 1)) * self.sigma | |
noise = torch.normal(mean=0, std=noise_level.expand_as(imgs_gt)) | |
imgs_lq = imgs_gt + noise | |
t, _, h, w = imgs_lq.shape | |
imgs_lq = torch.cat([imgs_lq, noise_level.expand(t, 1, h, w)], 1) | |
else: | |
# for video sr and deblurring | |
if self.cache_data: | |
imgs_lq = self.imgs_lq[folder] | |
imgs_gt = self.imgs_gt[folder] | |
else: | |
imgs_lq = utils_video.read_img_seq(self.imgs_lq[folder]) | |
imgs_gt = utils_video.read_img_seq(self.imgs_gt[folder]) | |
return { | |
'L': imgs_lq, | |
'H': imgs_gt, | |
'folder': folder, | |
'lq_path': self.imgs_lq[folder], | |
} | |
def __len__(self): | |
return len(self.folders) | |
class SingleVideoRecurrentTestDataset(data.Dataset): | |
"""Single ideo test dataset for recurrent architectures, which takes LR video | |
frames as input and output corresponding HR video frames (only input LQ path). | |
More generally, it supports testing dataset with following structures: | |
dataroot | |
βββ subfolder1 | |
βββ frame000 | |
βββ frame001 | |
βββ ... | |
βββ subfolder1 | |
βββ frame000 | |
βββ frame001 | |
βββ ... | |
βββ ... | |
For testing datasets, there is no need to prepare LMDB files. | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
io_backend (dict): IO backend type and other kwarg. | |
cache_data (bool): Whether to cache testing datasets. | |
name (str): Dataset name. | |
meta_info_file (str): The path to the file storing the list of test | |
folders. If not provided, all the folders in the dataroot will | |
be used. | |
num_frame (int): Window size for input frames. | |
padding (str): Padding mode. | |
""" | |
def __init__(self, opt): | |
super(SingleVideoRecurrentTestDataset, self).__init__() | |
self.opt = opt | |
self.cache_data = opt['cache_data'] | |
self.lq_root = opt['dataroot_lq'] | |
self.data_info = {'lq_path': [], 'folder': [], 'idx': [], 'border': []} | |
self.imgs_lq = {} | |
if 'meta_info_file' in opt: | |
with open(opt['meta_info_file'], 'r') as fin: | |
subfolders = [line.split(' ')[0] for line in fin] | |
subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders] | |
else: | |
subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*'))) | |
for subfolder_lq in subfolders_lq: | |
# get frame list for lq and gt | |
subfolder_name = osp.basename(subfolder_lq) | |
img_paths_lq = sorted(list(utils_video.scandir(subfolder_lq, full_path=True))) | |
max_idx = len(img_paths_lq) | |
self.data_info['lq_path'].extend(img_paths_lq) | |
self.data_info['folder'].extend([subfolder_name] * max_idx) | |
for i in range(max_idx): | |
self.data_info['idx'].append(f'{i}/{max_idx}') | |
border_l = [0] * max_idx | |
for i in range(self.opt['num_frame'] // 2): | |
border_l[i] = 1 | |
border_l[max_idx - i - 1] = 1 | |
self.data_info['border'].extend(border_l) | |
# cache data or save the frame list | |
if self.cache_data: | |
print(f'Cache {subfolder_name} for VideoTestDataset...') | |
self.imgs_lq[subfolder_name] = utils_video.read_img_seq(img_paths_lq) | |
else: | |
self.imgs_lq[subfolder_name] = img_paths_lq | |
# Find unique folder strings | |
self.folders = sorted(list(set(self.data_info['folder']))) | |
def __getitem__(self, index): | |
folder = self.folders[index] | |
if self.cache_data: | |
imgs_lq = self.imgs_lq[folder] | |
else: | |
imgs_lq = utils_video.read_img_seq(self.imgs_lq[folder]) | |
return { | |
'L': imgs_lq, | |
'folder': folder, | |
'lq_path': self.imgs_lq[folder], | |
} | |
def __len__(self): | |
return len(self.folders) | |
class VideoTestVimeo90KDataset(data.Dataset): | |
"""Video test dataset for Vimeo90k-Test dataset. | |
It only keeps the center frame for testing. | |
For testing datasets, there is no need to prepare LMDB files. | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
io_backend (dict): IO backend type and other kwarg. | |
cache_data (bool): Whether to cache testing datasets. | |
name (str): Dataset name. | |
meta_info_file (str): The path to the file storing the list of test | |
folders. If not provided, all the folders in the dataroot will | |
be used. | |
num_frame (int): Window size for input frames. | |
padding (str): Padding mode. | |
""" | |
def __init__(self, opt): | |
super(VideoTestVimeo90KDataset, self).__init__() | |
self.opt = opt | |
self.cache_data = opt['cache_data'] | |
if self.cache_data: | |
raise NotImplementedError('cache_data in Vimeo90K-Test dataset is not implemented.') | |
self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq'] | |
self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []} | |
neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])] | |
with open(opt['meta_info_file'], 'r') as fin: | |
subfolders = [line.split(' ')[0] for line in fin] | |
for idx, subfolder in enumerate(subfolders): | |
gt_path = osp.join(self.gt_root, subfolder, 'im4.png') | |
self.data_info['gt_path'].append(gt_path) | |
lq_paths = [osp.join(self.lq_root, subfolder, f'im{i}.png') for i in neighbor_list] | |
self.data_info['lq_path'].append(lq_paths) | |
self.data_info['folder'].append('vimeo90k') | |
self.data_info['idx'].append(f'{idx}/{len(subfolders)}') | |
self.data_info['border'].append(0) | |
self.pad_sequence = opt.get('pad_sequence', False) | |
def __getitem__(self, index): | |
lq_path = self.data_info['lq_path'][index] | |
gt_path = self.data_info['gt_path'][index] | |
imgs_lq = utils_video.read_img_seq(lq_path) | |
img_gt = utils_video.read_img_seq([gt_path]) | |
img_gt.squeeze_(0) | |
if self.pad_sequence: # pad the sequence: 7 frames to 8 frames | |
imgs_lq = torch.cat([imgs_lq, imgs_lq[-1:,...]], dim=0) | |
return { | |
'L': imgs_lq, # (t, c, h, w) | |
'H': img_gt, # (c, h, w) | |
'folder': self.data_info['folder'][index], # folder name | |
'idx': self.data_info['idx'][index], # e.g., 0/843 | |
'border': self.data_info['border'][index], # 0 for non-border | |
'lq_path': lq_path[self.opt['num_frame'] // 2] # center frame | |
} | |
def __len__(self): | |
return len(self.data_info['gt_path']) | |
class SingleVideoRecurrentTestDataset(data.Dataset): | |
"""Single Video test dataset (only input LQ path). | |
Supported datasets: Vid4, REDS4, REDSofficial. | |
More generally, it supports testing dataset with following structures: | |
dataroot | |
βββ subfolder1 | |
βββ frame000 | |
βββ frame001 | |
βββ ... | |
βββ subfolder1 | |
βββ frame000 | |
βββ frame001 | |
βββ ... | |
βββ ... | |
For testing datasets, there is no need to prepare LMDB files. | |
Args: | |
opt (dict): Config for train dataset. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
io_backend (dict): IO backend type and other kwarg. | |
cache_data (bool): Whether to cache testing datasets. | |
name (str): Dataset name. | |
meta_info_file (str): The path to the file storing the list of test | |
folders. If not provided, all the folders in the dataroot will | |
be used. | |
num_frame (int): Window size for input frames. | |
padding (str): Padding mode. | |
""" | |
def __init__(self, opt): | |
super(SingleVideoRecurrentTestDataset, self).__init__() | |
self.opt = opt | |
self.cache_data = opt['cache_data'] | |
self.lq_root = opt['dataroot_lq'] | |
self.data_info = {'lq_path': [], 'folder': [], 'idx': [], 'border': []} | |
# file client (io backend) | |
self.file_client = None | |
self.imgs_lq = {} | |
if 'meta_info_file' in opt: | |
with open(opt['meta_info_file'], 'r') as fin: | |
subfolders = [line.split(' ')[0] for line in fin] | |
subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders] | |
else: | |
subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*'))) | |
for subfolder_lq in subfolders_lq: | |
# get frame list for lq and gt | |
subfolder_name = osp.basename(subfolder_lq) | |
img_paths_lq = sorted(list(utils_video.scandir(subfolder_lq, full_path=True))) | |
max_idx = len(img_paths_lq) | |
self.data_info['lq_path'].extend(img_paths_lq) | |
self.data_info['folder'].extend([subfolder_name] * max_idx) | |
for i in range(max_idx): | |
self.data_info['idx'].append(f'{i}/{max_idx}') | |
border_l = [0] * max_idx | |
for i in range(self.opt['num_frame'] // 2): | |
border_l[i] = 1 | |
border_l[max_idx - i - 1] = 1 | |
self.data_info['border'].extend(border_l) | |
# cache data or save the frame list | |
if self.cache_data: | |
logger.info(f'Cache {subfolder_name} for VideoTestDataset...') | |
self.imgs_lq[subfolder_name] = utils_video.read_img_seq(img_paths_lq) | |
else: | |
self.imgs_lq[subfolder_name] = img_paths_lq | |
# Find unique folder strings | |
self.folders = sorted(list(set(self.data_info['folder']))) | |
def __getitem__(self, index): | |
folder = self.folders[index] | |
if self.cache_data: | |
imgs_lq = self.imgs_lq[folder] | |
else: | |
imgs_lq = utils_video.read_img_seq(self.imgs_lq[folder]) | |
return { | |
'L': imgs_lq, | |
'folder': folder, | |
'lq_path': self.imgs_lq[folder], | |
} | |
def __len__(self): | |
return len(self.folders) | |