File size: 15,221 Bytes
2514fb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import glob
import torch
from os import path as osp
import torch.utils.data as data

import utils.utils_video as utils_video


class VideoRecurrentTestDataset(data.Dataset):
    """Video test dataset for recurrent architectures, which takes LR video
    frames as input and output corresponding HR video frames. Modified from
    https://github.com/xinntao/BasicSR/blob/master/basicsr/data/reds_dataset.py

    Supported datasets: Vid4, REDS4, REDSofficial.
    More generally, it supports testing dataset with following structures:

    dataroot
    β”œβ”€β”€ subfolder1
        β”œβ”€β”€ frame000
        β”œβ”€β”€ frame001
        β”œβ”€β”€ ...
    β”œβ”€β”€ subfolder1
        β”œβ”€β”€ frame000
        β”œβ”€β”€ frame001
        β”œβ”€β”€ ...
    β”œβ”€β”€ ...

    For testing datasets, there is no need to prepare LMDB files.

    Args:
        opt (dict): Config for train dataset. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            dataroot_lq (str): Data root path for lq.
            io_backend (dict): IO backend type and other kwarg.
            cache_data (bool): Whether to cache testing datasets.
            name (str): Dataset name.
            meta_info_file (str): The path to the file storing the list of test
                folders. If not provided, all the folders in the dataroot will
                be used.
            num_frame (int): Window size for input frames.
            padding (str): Padding mode.
    """

    def __init__(self, opt):
        super(VideoRecurrentTestDataset, self).__init__()
        self.opt = opt
        self.cache_data = opt['cache_data']
        self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq']
        self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []}

        self.imgs_lq, self.imgs_gt = {}, {}
        if 'meta_info_file' in opt:
            with open(opt['meta_info_file'], 'r') as fin:
                subfolders = [line.split(' ')[0] for line in fin]
                subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders]
                subfolders_gt = [osp.join(self.gt_root, key) for key in subfolders]
        else:
            subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*')))
            subfolders_gt = sorted(glob.glob(osp.join(self.gt_root, '*')))

        for subfolder_lq, subfolder_gt in zip(subfolders_lq, subfolders_gt):
            # get frame list for lq and gt
            subfolder_name = osp.basename(subfolder_lq)
            img_paths_lq = sorted(list(utils_video.scandir(subfolder_lq, full_path=True)))
            img_paths_gt = sorted(list(utils_video.scandir(subfolder_gt, full_path=True)))

            max_idx = len(img_paths_lq)
            assert max_idx == len(img_paths_gt), (f'Different number of images in lq ({max_idx})'
                                                  f' and gt folders ({len(img_paths_gt)})')

            self.data_info['lq_path'].extend(img_paths_lq)
            self.data_info['gt_path'].extend(img_paths_gt)
            self.data_info['folder'].extend([subfolder_name] * max_idx)
            for i in range(max_idx):
                self.data_info['idx'].append(f'{i}/{max_idx}')
            border_l = [0] * max_idx
            for i in range(self.opt['num_frame'] // 2):
                border_l[i] = 1
                border_l[max_idx - i - 1] = 1
            self.data_info['border'].extend(border_l)

            # cache data or save the frame list
            if self.cache_data:
                print(f'Cache {subfolder_name} for VideoTestDataset...')
                self.imgs_lq[subfolder_name] = utils_video.read_img_seq(img_paths_lq)
                self.imgs_gt[subfolder_name] = utils_video.read_img_seq(img_paths_gt)
            else:
                self.imgs_lq[subfolder_name] = img_paths_lq
                self.imgs_gt[subfolder_name] = img_paths_gt

        # Find unique folder strings
        self.folders = sorted(list(set(self.data_info['folder'])))
        self.sigma = opt['sigma'] / 255. if 'sigma' in opt else 0 # for non-blind video denoising

    def __getitem__(self, index):
        folder = self.folders[index]

        if self.sigma:
        # for non-blind video denoising
            if self.cache_data:
                imgs_gt = self.imgs_gt[folder]
            else:
                imgs_gt = utils_video.read_img_seq(self.imgs_gt[folder])

            torch.manual_seed(0)
            noise_level = torch.ones((1, 1, 1, 1)) * self.sigma
            noise = torch.normal(mean=0, std=noise_level.expand_as(imgs_gt))
            imgs_lq = imgs_gt + noise
            t, _, h, w = imgs_lq.shape
            imgs_lq = torch.cat([imgs_lq, noise_level.expand(t, 1, h, w)], 1)
        else:
        # for video sr and deblurring
            if self.cache_data:
                imgs_lq = self.imgs_lq[folder]
                imgs_gt = self.imgs_gt[folder]
            else:
                imgs_lq = utils_video.read_img_seq(self.imgs_lq[folder])
                imgs_gt = utils_video.read_img_seq(self.imgs_gt[folder])

        return {
            'L': imgs_lq,
            'H': imgs_gt,
            'folder': folder,
            'lq_path': self.imgs_lq[folder],
        }

    def __len__(self):
        return len(self.folders)


class SingleVideoRecurrentTestDataset(data.Dataset):
    """Single ideo test dataset for recurrent architectures, which takes LR video
    frames as input and output corresponding HR video frames (only input LQ path).

    More generally, it supports testing dataset with following structures:

    dataroot
    β”œβ”€β”€ subfolder1
        β”œβ”€β”€ frame000
        β”œβ”€β”€ frame001
        β”œβ”€β”€ ...
    β”œβ”€β”€ subfolder1
        β”œβ”€β”€ frame000
        β”œβ”€β”€ frame001
        β”œβ”€β”€ ...
    β”œβ”€β”€ ...

    For testing datasets, there is no need to prepare LMDB files.

    Args:
        opt (dict): Config for train dataset. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            dataroot_lq (str): Data root path for lq.
            io_backend (dict): IO backend type and other kwarg.
            cache_data (bool): Whether to cache testing datasets.
            name (str): Dataset name.
            meta_info_file (str): The path to the file storing the list of test
                folders. If not provided, all the folders in the dataroot will
                be used.
            num_frame (int): Window size for input frames.
            padding (str): Padding mode.
    """

    def __init__(self, opt):
        super(SingleVideoRecurrentTestDataset, self).__init__()
        self.opt = opt
        self.cache_data = opt['cache_data']
        self.lq_root = opt['dataroot_lq']
        self.data_info = {'lq_path': [], 'folder': [], 'idx': [], 'border': []}

        self.imgs_lq = {}
        if 'meta_info_file' in opt:
            with open(opt['meta_info_file'], 'r') as fin:
                subfolders = [line.split(' ')[0] for line in fin]
                subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders]
        else:
            subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*')))

        for subfolder_lq in subfolders_lq:
            # get frame list for lq and gt
            subfolder_name = osp.basename(subfolder_lq)
            img_paths_lq = sorted(list(utils_video.scandir(subfolder_lq, full_path=True)))

            max_idx = len(img_paths_lq)

            self.data_info['lq_path'].extend(img_paths_lq)
            self.data_info['folder'].extend([subfolder_name] * max_idx)
            for i in range(max_idx):
                self.data_info['idx'].append(f'{i}/{max_idx}')
            border_l = [0] * max_idx
            for i in range(self.opt['num_frame'] // 2):
                border_l[i] = 1
                border_l[max_idx - i - 1] = 1
            self.data_info['border'].extend(border_l)

            # cache data or save the frame list
            if self.cache_data:
                print(f'Cache {subfolder_name} for VideoTestDataset...')
                self.imgs_lq[subfolder_name] = utils_video.read_img_seq(img_paths_lq)
            else:
                self.imgs_lq[subfolder_name] = img_paths_lq

        # Find unique folder strings
        self.folders = sorted(list(set(self.data_info['folder'])))

    def __getitem__(self, index):
        folder = self.folders[index]

        if self.cache_data:
            imgs_lq = self.imgs_lq[folder]
        else:
            imgs_lq = utils_video.read_img_seq(self.imgs_lq[folder])

        return {
            'L': imgs_lq,
            'folder': folder,
            'lq_path': self.imgs_lq[folder],
        }

    def __len__(self):
        return len(self.folders)


class VideoTestVimeo90KDataset(data.Dataset):
    """Video test dataset for Vimeo90k-Test dataset.

    It only keeps the center frame for testing.
    For testing datasets, there is no need to prepare LMDB files.

    Args:
        opt (dict): Config for train dataset. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            dataroot_lq (str): Data root path for lq.
            io_backend (dict): IO backend type and other kwarg.
            cache_data (bool): Whether to cache testing datasets.
            name (str): Dataset name.
            meta_info_file (str): The path to the file storing the list of test
                folders. If not provided, all the folders in the dataroot will
                be used.
            num_frame (int): Window size for input frames.
            padding (str): Padding mode.
    """

    def __init__(self, opt):
        super(VideoTestVimeo90KDataset, self).__init__()
        self.opt = opt
        self.cache_data = opt['cache_data']
        if self.cache_data:
            raise NotImplementedError('cache_data in Vimeo90K-Test dataset is not implemented.')
        self.gt_root, self.lq_root = opt['dataroot_gt'], opt['dataroot_lq']
        self.data_info = {'lq_path': [], 'gt_path': [], 'folder': [], 'idx': [], 'border': []}
        neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]

        with open(opt['meta_info_file'], 'r') as fin:
            subfolders = [line.split(' ')[0] for line in fin]
        for idx, subfolder in enumerate(subfolders):
            gt_path = osp.join(self.gt_root, subfolder, 'im4.png')
            self.data_info['gt_path'].append(gt_path)
            lq_paths = [osp.join(self.lq_root, subfolder, f'im{i}.png') for i in neighbor_list]
            self.data_info['lq_path'].append(lq_paths)
            self.data_info['folder'].append('vimeo90k')
            self.data_info['idx'].append(f'{idx}/{len(subfolders)}')
            self.data_info['border'].append(0)

        self.pad_sequence = opt.get('pad_sequence', False)

    def __getitem__(self, index):
        lq_path = self.data_info['lq_path'][index]
        gt_path = self.data_info['gt_path'][index]
        imgs_lq = utils_video.read_img_seq(lq_path)
        img_gt = utils_video.read_img_seq([gt_path])
        img_gt.squeeze_(0)

        if self.pad_sequence:  # pad the sequence: 7 frames to 8 frames
            imgs_lq = torch.cat([imgs_lq, imgs_lq[-1:,...]], dim=0)

        return {
            'L': imgs_lq,  # (t, c, h, w)
            'H': img_gt,  # (c, h, w)
            'folder': self.data_info['folder'][index],  # folder name
            'idx': self.data_info['idx'][index],  # e.g., 0/843
            'border': self.data_info['border'][index],  # 0 for non-border
            'lq_path': lq_path[self.opt['num_frame'] // 2]  # center frame
        }

    def __len__(self):
        return len(self.data_info['gt_path'])


class SingleVideoRecurrentTestDataset(data.Dataset):
    """Single Video test dataset (only input LQ path).

    Supported datasets: Vid4, REDS4, REDSofficial.
    More generally, it supports testing dataset with following structures:

    dataroot
    β”œβ”€β”€ subfolder1
        β”œβ”€β”€ frame000
        β”œβ”€β”€ frame001
        β”œβ”€β”€ ...
    β”œβ”€β”€ subfolder1
        β”œβ”€β”€ frame000
        β”œβ”€β”€ frame001
        β”œβ”€β”€ ...
    β”œβ”€β”€ ...

    For testing datasets, there is no need to prepare LMDB files.

    Args:
        opt (dict): Config for train dataset. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            dataroot_lq (str): Data root path for lq.
            io_backend (dict): IO backend type and other kwarg.
            cache_data (bool): Whether to cache testing datasets.
            name (str): Dataset name.
            meta_info_file (str): The path to the file storing the list of test
                folders. If not provided, all the folders in the dataroot will
                be used.
            num_frame (int): Window size for input frames.
            padding (str): Padding mode.
    """

    def __init__(self, opt):
        super(SingleVideoRecurrentTestDataset, self).__init__()
        self.opt = opt
        self.cache_data = opt['cache_data']
        self.lq_root = opt['dataroot_lq']
        self.data_info = {'lq_path': [], 'folder': [], 'idx': [], 'border': []}
        # file client (io backend)
        self.file_client = None

        self.imgs_lq = {}
        if 'meta_info_file' in opt:
            with open(opt['meta_info_file'], 'r') as fin:
                subfolders = [line.split(' ')[0] for line in fin]
                subfolders_lq = [osp.join(self.lq_root, key) for key in subfolders]
        else:
            subfolders_lq = sorted(glob.glob(osp.join(self.lq_root, '*')))

        for subfolder_lq in subfolders_lq:
            # get frame list for lq and gt
            subfolder_name = osp.basename(subfolder_lq)
            img_paths_lq = sorted(list(utils_video.scandir(subfolder_lq, full_path=True)))

            max_idx = len(img_paths_lq)

            self.data_info['lq_path'].extend(img_paths_lq)
            self.data_info['folder'].extend([subfolder_name] * max_idx)
            for i in range(max_idx):
                self.data_info['idx'].append(f'{i}/{max_idx}')
            border_l = [0] * max_idx
            for i in range(self.opt['num_frame'] // 2):
                border_l[i] = 1
                border_l[max_idx - i - 1] = 1
            self.data_info['border'].extend(border_l)

            # cache data or save the frame list
            if self.cache_data:
                logger.info(f'Cache {subfolder_name} for VideoTestDataset...')
                self.imgs_lq[subfolder_name] = utils_video.read_img_seq(img_paths_lq)
            else:
                self.imgs_lq[subfolder_name] = img_paths_lq

        # Find unique folder strings
        self.folders = sorted(list(set(self.data_info['folder'])))

    def __getitem__(self, index):
        folder = self.folders[index]

        if self.cache_data:
            imgs_lq = self.imgs_lq[folder]
        else:
            imgs_lq = utils_video.read_img_seq(self.imgs_lq[folder])

        return {
            'L': imgs_lq,
            'folder': folder,
            'lq_path': self.imgs_lq[folder],
        }

    def __len__(self):
        return len(self.folders)