Commit
·
c3c7748
1
Parent(s):
ab6b19a
Final changes
Browse files- .gitattributes +2 -1
- README.md +152 -152
- anime_recommender/components/collaborative_recommender.py +58 -53
- anime_recommender/components/content_based_recommender.py +7 -2
- anime_recommender/constant/__init__.py +1 -2
- anime_recommender/exception/exception.py +2 -2
- anime_recommender/pipelines/training_pipeline.py +1 -2
- anime_recommender/utils/main_utils/utils.py +23 -0
- app.py +241 -241
- logs/{02_03_2025_11_40_31.log → 02_08_2025_12_23_10.log} +119 -73
- notebooks/EDA.ipynb +0 -0
- notebooks/final_ARS.ipynb +0 -0
- run_pipeline.py +4 -1
.gitattributes
CHANGED
@@ -32,4 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/project_architecture.gif filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,153 +1,153 @@
|
|
1 |
-
---
|
2 |
-
title: Anime Recommendation System
|
3 |
-
emoji: 📚
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.41.1
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
-
|
15 |
-
# Anime Recommendation system
|
16 |
-
|
17 |
-
This is an **Anime Recommendation System** that combines multiple recommendation techniques such as **Collaborative Filtering**, **Content-Based Filtering**, and **Popularity-Based Filtering**. We used the **AnimeList 2023 dataset**, but to optimize computational cost and storage, we included only animes with an average rating above **6.0**. The system is designed for **continuous data ingestion and transformation** and is fully **dockerized** for seamless deployment.
|
18 |
-
|
19 |
-
The system is hosted on **Hugging Face Spaces** and fetches datasets and pre-trained models from **Hugging Face Hub** to generate **personalized anime recommendations** based on user preferences and anime features.
|
20 |
-
|
21 |
-

|
22 |
-
|
23 |
-
## Live Demo 🤗
|
24 |
-
[Anime Recommendation System App](https://huggingface.co/spaces/krishnaveni76/Anime-Recommendation-System)
|
25 |
-
|
26 |
-
## Tech Stacks 🛠️
|
27 |
-
|
28 |
-
- **Python**: Main programming language used for building recommendation algorithms and Streamlit app.
|
29 |
-
- **Docker**: Containerizes the application to ensure a consistent environment across different platforms.
|
30 |
-
- **Streamlit**: For building and deploying the web app that serves the recommendations.
|
31 |
-
- **Hugging Face Spaces**: Hosts the Streamlit-based recommendation system.
|
32 |
-
- **Hugging Face Datasets**: Stores and retrieves anime datasets for processing.
|
33 |
-
- **Hugging Face Models**: Stores the pre-trained recommendation models for inference.
|
34 |
-
|
35 |
-
## Pipeline 🚀
|
36 |
-
|
37 |
-

|
38 |
-
|
39 |
-
The pipeline follows a structured sequence of steps to build an **Anime Recommendation System**, including data ingestion, transformation, and multiple recommendation models.
|
40 |
-
|
41 |
-
### 1. Data Ingestion 📥
|
42 |
-
- Initiates the **data ingestion process**, where anime data is loaded from Hugging Face datasets.
|
43 |
-
- The ingested data is saved as artifacts in a local folder for further processing.
|
44 |
-
|
45 |
-
### 2. Data Transformation 🔄
|
46 |
-
- Cleans, transforms, and processes the raw data into a structured format.
|
47 |
-
- Extracts important features required for **Content-Based Filtering** and prepares data for **Collaborative Filtering**.
|
48 |
-
|
49 |
-
### 3. Collaborative Filtering 🤝
|
50 |
-
- Implements **three collaborative filtering models** to recommend anime based on user preferences:
|
51 |
-
- **Singular Value Decomposition (SVD)**: Factorizes the user-item interaction matrix to make personalized recommendations.
|
52 |
-
- **Item-Based K-Nearest Neighbors (Item-KNN)**: Recommends anime similar to a given anime based on user ratings.
|
53 |
-
- **User-Based K-Nearest Neighbors (User-KNN)**: Suggests anime that users with similar preferences have liked.
|
54 |
-
- The chosen model is trained using **transformed data**, and the final trained model is stored as an artifact.
|
55 |
-
- Once trained, it can generate recommendations for users or anime titles.
|
56 |
-
|
57 |
-

|
58 |
-
|
59 |
-
### 4. Content-Based Filtering 🎭
|
60 |
-
- Uses extracted anime features like genres to train a **Content-Based Recommendation Model**.
|
61 |
-
- This model recommends anime similar to those a user has watched or liked.
|
62 |
-
|
63 |
-
### 5. Popularity-Based Filtering ⭐
|
64 |
-
This recommendation system ranks anime based on various **popularity metrics**, making it ideal for users who want to discover trending or highly-rated shows **without needing personalized preferences**.
|
65 |
-
|
66 |
-
The system applies different filters to sort anime based on:
|
67 |
-
|
68 |
-
- **Most Popular** 🎭: Anime ranked by **popularity score**, highlighting the most widely recognized titles.
|
69 |
-
- **Top Ranked** 🏆: Highest-rated anime, based on **official ranking metrics**.
|
70 |
-
- **Overall Top Rated** ⭐: Best-rated anime, sorted by **average user ratings**.
|
71 |
-
- **Most Favorited** ❤️: Anime with the highest number of **favorites**, indicating strong fan appreciation.
|
72 |
-
- **Highest Member Count** 👥: Anime with the largest **viewer base**, showing widespread appeal.
|
73 |
-
- **Popular Among Members** 🔥: Anime with a **high number of members and strong ratings**, making them community favorites.
|
74 |
-
- **Highest Average Rating** 🎖️: Shows that have the **best average rating** after handling missing values.
|
75 |
-
|
76 |
-
## Artifacts Storage 📂
|
77 |
-
|
78 |
-
All intermediate and final outputs, including processed datasets and trained models, are first saved locally in the **Artifacts** folder. These artifacts are then uploaded to **Hugging Face** for efficient storage and easy access.
|
79 |
-
|
80 |
-
When building the **Streamlit** app, these datasets and trained models are retrieved directly from **Hugging Face**, ensuring seamless integration and scalability.
|
81 |
-
|
82 |
-

|
83 |
-
|
84 |
-
- The datasets used in this project are available at:
|
85 |
-
- [Anime and User Ratings](https://www.kaggle.com/datasets/krishnaveniponna/anime-and-ratings-list-dataset-2023)
|
86 |
-
|
87 |
-
- You can find the Artifacts of trained models here:
|
88 |
-
- [Pre-trained Models](https://huggingface.co/krishnaveni76/anime-recommendation-models)
|
89 |
-
|
90 |
-
## Deployment on Hugging Face Spaces 🚀
|
91 |
-
|
92 |
-
This project is deployed using **Hugging Face Spaces**, which provides a seamless way to host **Streamlit applications**. The application pulls the datasets and trained models from Hugging Face and runs inside a **Docker container**.
|
93 |
-
|
94 |
-
### Pre-requisites
|
95 |
-
- Docker
|
96 |
-
- Hugging Face (for datasets and trained models)
|
97 |
-
- Python 3.8+
|
98 |
-
- Hugging Face Spaces account
|
99 |
-
|
100 |
-
### Local step 🔧
|
101 |
-
1. **Clone the repository**
|
102 |
-
```bash
|
103 |
-
git clone https://huggingface.co/spaces/krishnaveni76/Anime-Recommendation-System
|
104 |
-
cd Anime-Recommendation-System
|
105 |
-
```
|
106 |
-
2. **Set Up a Virtual Environment**:
|
107 |
-
```bash
|
108 |
-
# For macOS and Linux:
|
109 |
-
python3 -m venv venv
|
110 |
-
# For Windows:
|
111 |
-
python -m venv venv
|
112 |
-
```
|
113 |
-
3. **Activate the Virtual Environment**:
|
114 |
-
```bash
|
115 |
-
# For macOS and Linux:
|
116 |
-
source venv/bin/activate
|
117 |
-
# For Windows:
|
118 |
-
.\venv\Scripts\activate
|
119 |
-
```
|
120 |
-
4. **Install Required Dependencies**:
|
121 |
-
```bash
|
122 |
-
pip install -r requirements.txt
|
123 |
-
```
|
124 |
-
|
125 |
-
### Running the Pipeline 🔄
|
126 |
-
To process the data and train the recommendation models, run the following command:
|
127 |
-
|
128 |
-
```bash
|
129 |
-
python run_pipeline.py
|
130 |
-
```
|
131 |
-
This will execute the pipeline, ingest and transform data, and train the models before making recommendations.
|
132 |
-
|
133 |
-
### Running with Docker 🚀
|
134 |
-
To run the application inside a Docker container, follow these steps:
|
135 |
-
|
136 |
-
1. Build the Docker Image
|
137 |
-
```bash
|
138 |
-
docker build -t anime-recommendation-system .
|
139 |
-
```
|
140 |
-
2. Run the Docker Container
|
141 |
-
```bash
|
142 |
-
docker run -p 8501:8501 anime-recommendation-system
|
143 |
-
```
|
144 |
-
This will start the Streamlit application, which can be accessed at `http://localhost:8501`.
|
145 |
-
|
146 |
-
### Contact 📫
|
147 |
-
For any questions, suggestions, or collaboration opportunities, feel free to reach out:
|
148 |
-
|
149 |
-
📧Email: [email protected]
|
150 |
-
|
151 |
-
🌐 LinkedIn: [Krishnaveni Ponna](https://www.linkedin.com/in/krishnaveni-ponna-28ab93239)
|
152 |
-
|
153 |
🐦 Twitter: [@Krishnaveni076](https://x.com/Krishnaveni076)
|
|
|
1 |
+
---
|
2 |
+
title: Anime Recommendation System
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.41.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
# Anime Recommendation system
|
16 |
+
|
17 |
+
This is an **Anime Recommendation System** that combines multiple recommendation techniques such as **Collaborative Filtering**, **Content-Based Filtering**, and **Popularity-Based Filtering**. We used the **AnimeList 2023 dataset**, but to optimize computational cost and storage, we included only animes with an average rating above **6.0**. The system is designed for **continuous data ingestion and transformation** and is fully **dockerized** for seamless deployment.
|
18 |
+
|
19 |
+
The system is hosted on **Hugging Face Spaces** and fetches datasets and pre-trained models from **Hugging Face Hub** to generate **personalized anime recommendations** based on user preferences and anime features.
|
20 |
+
|
21 |
+

|
22 |
+
|
23 |
+
## Live Demo 🤗
|
24 |
+
[Anime Recommendation System App](https://huggingface.co/spaces/krishnaveni76/Anime-Recommendation-System)
|
25 |
+
|
26 |
+
## Tech Stacks 🛠️
|
27 |
+
|
28 |
+
- **Python**: Main programming language used for building recommendation algorithms and Streamlit app.
|
29 |
+
- **Docker**: Containerizes the application to ensure a consistent environment across different platforms.
|
30 |
+
- **Streamlit**: For building and deploying the web app that serves the recommendations.
|
31 |
+
- **Hugging Face Spaces**: Hosts the Streamlit-based recommendation system.
|
32 |
+
- **Hugging Face Datasets**: Stores and retrieves anime datasets for processing.
|
33 |
+
- **Hugging Face Models**: Stores the pre-trained recommendation models for inference.
|
34 |
+
|
35 |
+
## Pipeline 🚀
|
36 |
+
|
37 |
+

|
38 |
+
|
39 |
+
The pipeline follows a structured sequence of steps to build an **Anime Recommendation System**, including data ingestion, transformation, and multiple recommendation models.
|
40 |
+
|
41 |
+
### 1. Data Ingestion 📥
|
42 |
+
- Initiates the **data ingestion process**, where anime data is loaded from Hugging Face datasets.
|
43 |
+
- The ingested data is saved as artifacts in a local folder for further processing.
|
44 |
+
|
45 |
+
### 2. Data Transformation 🔄
|
46 |
+
- Cleans, transforms, and processes the raw data into a structured format.
|
47 |
+
- Extracts important features required for **Content-Based Filtering** and prepares data for **Collaborative Filtering**.
|
48 |
+
|
49 |
+
### 3. Collaborative Filtering 🤝
|
50 |
+
- Implements **three collaborative filtering models** to recommend anime based on user preferences:
|
51 |
+
- **Singular Value Decomposition (SVD)**: Factorizes the user-item interaction matrix to make personalized recommendations.
|
52 |
+
- **Item-Based K-Nearest Neighbors (Item-KNN)**: Recommends anime similar to a given anime based on user ratings.
|
53 |
+
- **User-Based K-Nearest Neighbors (User-KNN)**: Suggests anime that users with similar preferences have liked.
|
54 |
+
- The chosen model is trained using **transformed data**, and the final trained model is stored as an artifact.
|
55 |
+
- Once trained, it can generate recommendations for users or anime titles.
|
56 |
+
|
57 |
+

|
58 |
+
|
59 |
+
### 4. Content-Based Filtering 🎭
|
60 |
+
- Uses extracted anime features like genres to train a **Content-Based Recommendation Model**.
|
61 |
+
- This model recommends anime similar to those a user has watched or liked.
|
62 |
+
|
63 |
+
### 5. Popularity-Based Filtering ⭐
|
64 |
+
This recommendation system ranks anime based on various **popularity metrics**, making it ideal for users who want to discover trending or highly-rated shows **without needing personalized preferences**.
|
65 |
+
|
66 |
+
The system applies different filters to sort anime based on:
|
67 |
+
|
68 |
+
- **Most Popular** 🎭: Anime ranked by **popularity score**, highlighting the most widely recognized titles.
|
69 |
+
- **Top Ranked** 🏆: Highest-rated anime, based on **official ranking metrics**.
|
70 |
+
- **Overall Top Rated** ⭐: Best-rated anime, sorted by **average user ratings**.
|
71 |
+
- **Most Favorited** ❤️: Anime with the highest number of **favorites**, indicating strong fan appreciation.
|
72 |
+
- **Highest Member Count** 👥: Anime with the largest **viewer base**, showing widespread appeal.
|
73 |
+
- **Popular Among Members** 🔥: Anime with a **high number of members and strong ratings**, making them community favorites.
|
74 |
+
- **Highest Average Rating** 🎖️: Shows that have the **best average rating** after handling missing values.
|
75 |
+
|
76 |
+
## Artifacts Storage 📂
|
77 |
+
|
78 |
+
All intermediate and final outputs, including processed datasets and trained models, are first saved locally in the **Artifacts** folder. These artifacts are then uploaded to **Hugging Face** for efficient storage and easy access.
|
79 |
+
|
80 |
+
When building the **Streamlit** app, these datasets and trained models are retrieved directly from **Hugging Face**, ensuring seamless integration and scalability.
|
81 |
+
|
82 |
+

|
83 |
+
|
84 |
+
- The datasets used in this project are available at:
|
85 |
+
- [Anime and User Ratings](https://www.kaggle.com/datasets/krishnaveniponna/anime-and-ratings-list-dataset-2023)
|
86 |
+
|
87 |
+
- You can find the Artifacts of trained models here:
|
88 |
+
- [Pre-trained Models](https://huggingface.co/krishnaveni76/anime-recommendation-models)
|
89 |
+
|
90 |
+
## Deployment on Hugging Face Spaces 🚀
|
91 |
+
|
92 |
+
This project is deployed using **Hugging Face Spaces**, which provides a seamless way to host **Streamlit applications**. The application pulls the datasets and trained models from Hugging Face and runs inside a **Docker container**.
|
93 |
+
|
94 |
+
### Pre-requisites
|
95 |
+
- Docker
|
96 |
+
- Hugging Face (for datasets and trained models)
|
97 |
+
- Python 3.8+
|
98 |
+
- Hugging Face Spaces account
|
99 |
+
|
100 |
+
### Local step 🔧
|
101 |
+
1. **Clone the repository**
|
102 |
+
```bash
|
103 |
+
git clone https://huggingface.co/spaces/krishnaveni76/Anime-Recommendation-System
|
104 |
+
cd Anime-Recommendation-System
|
105 |
+
```
|
106 |
+
2. **Set Up a Virtual Environment**:
|
107 |
+
```bash
|
108 |
+
# For macOS and Linux:
|
109 |
+
python3 -m venv venv
|
110 |
+
# For Windows:
|
111 |
+
python -m venv venv
|
112 |
+
```
|
113 |
+
3. **Activate the Virtual Environment**:
|
114 |
+
```bash
|
115 |
+
# For macOS and Linux:
|
116 |
+
source venv/bin/activate
|
117 |
+
# For Windows:
|
118 |
+
.\venv\Scripts\activate
|
119 |
+
```
|
120 |
+
4. **Install Required Dependencies**:
|
121 |
+
```bash
|
122 |
+
pip install -r requirements.txt
|
123 |
+
```
|
124 |
+
|
125 |
+
### Running the Pipeline 🔄
|
126 |
+
To process the data and train the recommendation models, run the following command:
|
127 |
+
|
128 |
+
```bash
|
129 |
+
python run_pipeline.py
|
130 |
+
```
|
131 |
+
This will execute the pipeline, ingest and transform data, and train the models before making recommendations.
|
132 |
+
|
133 |
+
### Running with Docker 🚀
|
134 |
+
To run the application inside a Docker container, follow these steps:
|
135 |
+
|
136 |
+
1. Build the Docker Image
|
137 |
+
```bash
|
138 |
+
docker build -t anime-recommendation-system .
|
139 |
+
```
|
140 |
+
2. Run the Docker Container
|
141 |
+
```bash
|
142 |
+
docker run -p 8501:8501 anime-recommendation-system
|
143 |
+
```
|
144 |
+
This will start the Streamlit application, which can be accessed at `http://localhost:8501`.
|
145 |
+
|
146 |
+
### Contact 📫
|
147 |
+
For any questions, suggestions, or collaboration opportunities, feel free to reach out:
|
148 |
+
|
149 |
+
📧Email: [email protected]
|
150 |
+
|
151 |
+
🌐 LinkedIn: [Krishnaveni Ponna](https://www.linkedin.com/in/krishnaveni-ponna-28ab93239)
|
152 |
+
|
153 |
🐦 Twitter: [@Krishnaveni076](https://x.com/Krishnaveni076)
|
anime_recommender/components/collaborative_recommender.py
CHANGED
@@ -3,9 +3,10 @@ from anime_recommender.loggers.logging import logging
|
|
3 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
4 |
from anime_recommender.entity.config_entity import CollaborativeModelConfig
|
5 |
from anime_recommender.entity.artifact_entity import DataTransformationArtifact, CollaborativeModelArtifact
|
6 |
-
from anime_recommender.utils.main_utils.utils import load_csv_data, save_model, load_object
|
7 |
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender
|
8 |
-
|
|
|
9 |
class CollaborativeModelTrainer:
|
10 |
"""
|
11 |
Trains and saves collaborative filtering recommendation models.
|
@@ -29,63 +30,67 @@ class CollaborativeModelTrainer:
|
|
29 |
except Exception as e:
|
30 |
raise AnimeRecommendorException(e, sys)
|
31 |
|
32 |
-
def initiate_model_trainer(self
|
33 |
"""
|
34 |
-
Trains and saves
|
35 |
-
|
36 |
-
model_type (str): The type of model to train.
|
37 |
-
Choices: 'svd', 'item_knn', 'user_knn'.
|
38 |
Returns:
|
39 |
-
CollaborativeModelArtifact: Object containing
|
40 |
"""
|
41 |
try:
|
42 |
logging.info("Loading transformed data...")
|
43 |
df = load_csv_data(self.data_transformation_artifact.merged_file_path)
|
44 |
-
recommender = CollaborativeAnimeRecommender(df)
|
45 |
-
|
46 |
-
if model_type == 'svd':
|
47 |
-
logging.info("Training and saving SVD model...")
|
48 |
-
recommender.train_svd()
|
49 |
-
save_model(recommender.svd, self.collaborative_model_trainer_config.svd_trained_model_file_path)
|
50 |
-
|
51 |
-
logging.info("Loading pre-trained SVD model...")
|
52 |
-
svd_model = load_object(self.collaborative_model_trainer_config.svd_trained_model_file_path)
|
53 |
-
svd_recommendations = recommender.get_svd_recommendations(user_id=436, n=10, svd_model=svd_model)
|
54 |
-
logging.info(f"SVD recommendations: {svd_recommendations}")
|
55 |
-
return CollaborativeModelArtifact(
|
56 |
-
svd_file_path=self.collaborative_model_trainer_config.svd_trained_model_file_path
|
57 |
-
)
|
58 |
-
|
59 |
-
elif model_type == 'item_knn':
|
60 |
-
logging.info("Training and saving KNN item-based model...")
|
61 |
-
recommender.train_knn_item_based()
|
62 |
-
save_model(recommender.knn_item_based, self.collaborative_model_trainer_config.item_knn_trained_model_file_path)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
save_model(recommender.knn_user_based, self.collaborative_model_trainer_config.user_knn_trained_model_file_path)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
-
raise AnimeRecommendorException(f"Error in CollaborativeModelTrainer: {str(e)}", sys)
|
|
|
3 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
4 |
from anime_recommender.entity.config_entity import CollaborativeModelConfig
|
5 |
from anime_recommender.entity.artifact_entity import DataTransformationArtifact, CollaborativeModelArtifact
|
6 |
+
from anime_recommender.utils.main_utils.utils import load_csv_data, save_model, load_object, upload_model_to_huggingface
|
7 |
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender
|
8 |
+
from anime_recommender.constant import *
|
9 |
+
|
10 |
class CollaborativeModelTrainer:
|
11 |
"""
|
12 |
Trains and saves collaborative filtering recommendation models.
|
|
|
30 |
except Exception as e:
|
31 |
raise AnimeRecommendorException(e, sys)
|
32 |
|
33 |
+
def initiate_model_trainer(self) -> CollaborativeModelArtifact:
|
34 |
"""
|
35 |
+
Trains and saves all collaborative filtering models.
|
36 |
+
|
|
|
|
|
37 |
Returns:
|
38 |
+
CollaborativeModelArtifact: Object containing file paths of all trained models.
|
39 |
"""
|
40 |
try:
|
41 |
logging.info("Loading transformed data...")
|
42 |
df = load_csv_data(self.data_transformation_artifact.merged_file_path)
|
43 |
+
recommender = CollaborativeAnimeRecommender(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# Train and save SVD model
|
46 |
+
logging.info("Training and saving SVD model...")
|
47 |
+
recommender.train_svd()
|
48 |
+
save_model(model=recommender.svd,file_path= self.collaborative_model_trainer_config.svd_trained_model_file_path)
|
49 |
+
upload_model_to_huggingface(
|
50 |
+
model_path=self.collaborative_model_trainer_config.svd_trained_model_file_path,
|
51 |
+
repo_id=MODELS_FILEPATH,
|
52 |
+
filename=MODEL_TRAINER_SVD_TRAINED_MODEL_NAME
|
53 |
+
)
|
54 |
+
logging.info("Loading pre-trained SVD model...")
|
55 |
+
svd_model = load_object(self.collaborative_model_trainer_config.svd_trained_model_file_path)
|
56 |
+
svd_recommendations = recommender.get_svd_recommendations(user_id=436, n=10, svd_model=svd_model)
|
57 |
+
logging.info(f"SVD recommendations: {svd_recommendations}")
|
|
|
58 |
|
59 |
+
# Train and save Item-Based KNN model
|
60 |
+
logging.info("Training and saving KNN item-based model...")
|
61 |
+
recommender.train_knn_item_based()
|
62 |
+
save_model(model=recommender.knn_item_based, file_path=self.collaborative_model_trainer_config.item_knn_trained_model_file_path)
|
63 |
+
upload_model_to_huggingface(
|
64 |
+
model_path=self.collaborative_model_trainer_config.item_knn_trained_model_file_path,
|
65 |
+
repo_id=MODELS_FILEPATH,
|
66 |
+
filename=MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME
|
67 |
+
)
|
68 |
+
logging.info("Loading pre-trained item-based KNN model...")
|
69 |
+
item_knn_model = load_object(self.collaborative_model_trainer_config.item_knn_trained_model_file_path)
|
70 |
+
item_based_recommendations = recommender.get_item_based_recommendations(
|
71 |
+
anime_name='One Piece', n_recommendations=10, knn_item_model=item_knn_model
|
72 |
+
)
|
73 |
+
logging.info(f"Item Based recommendations: {item_based_recommendations}")
|
74 |
+
|
75 |
+
# Train and save User-Based KNN model
|
76 |
+
logging.info("Training and saving KNN user-based model...")
|
77 |
+
recommender.train_knn_user_based()
|
78 |
+
save_model(model=recommender.knn_user_based,file_path= self.collaborative_model_trainer_config.user_knn_trained_model_file_path)
|
79 |
+
upload_model_to_huggingface(
|
80 |
+
model_path=self.collaborative_model_trainer_config.user_knn_trained_model_file_path,
|
81 |
+
repo_id=MODELS_FILEPATH,
|
82 |
+
filename=MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME
|
83 |
+
)
|
84 |
+
logging.info("Loading pre-trained user-based KNN model...")
|
85 |
+
user_knn_model = load_object(self.collaborative_model_trainer_config.user_knn_trained_model_file_path)
|
86 |
+
user_based_recommendations = recommender.get_user_based_recommendations(
|
87 |
+
user_id=817, n_recommendations=10, knn_user_model=user_knn_model
|
88 |
+
)
|
89 |
+
logging.info(f"User Based recommendations: {user_based_recommendations}")
|
90 |
+
return CollaborativeModelArtifact(
|
91 |
+
svd_file_path=self.collaborative_model_trainer_config.svd_trained_model_file_path,
|
92 |
+
item_based_knn_file_path=self.collaborative_model_trainer_config.item_knn_trained_model_file_path,
|
93 |
+
user_based_knn_file_path=self.collaborative_model_trainer_config.user_knn_trained_model_file_path
|
94 |
+
)
|
95 |
except Exception as e:
|
96 |
+
raise AnimeRecommendorException(f"Error in CollaborativeModelTrainer: {str(e)}", sys)
|
anime_recommender/components/content_based_recommender.py
CHANGED
@@ -3,7 +3,7 @@ from anime_recommender.loggers.logging import logging
|
|
3 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
4 |
from anime_recommender.entity.config_entity import ContentBasedModelConfig
|
5 |
from anime_recommender.entity.artifact_entity import ContentBasedModelArtifact, DataIngestionArtifact
|
6 |
-
from anime_recommender.utils.main_utils.utils import load_csv_data
|
7 |
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender
|
8 |
from anime_recommender.constant import *
|
9 |
|
@@ -42,7 +42,12 @@ class ContentBasedModelTrainer:
|
|
42 |
recommender = ContentBasedRecommender(df=df )
|
43 |
|
44 |
# Save the model (TF-IDF and cosine similarity matrix)
|
45 |
-
recommender.save_model(self.content_based_model_trainer_config.cosine_similarity_model_file_path)
|
|
|
|
|
|
|
|
|
|
|
46 |
logging.info("Model saved successfully.")
|
47 |
|
48 |
logging.info("Loading saved model to get recommendations...")
|
|
|
3 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
4 |
from anime_recommender.entity.config_entity import ContentBasedModelConfig
|
5 |
from anime_recommender.entity.artifact_entity import ContentBasedModelArtifact, DataIngestionArtifact
|
6 |
+
from anime_recommender.utils.main_utils.utils import load_csv_data, upload_model_to_huggingface
|
7 |
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender
|
8 |
from anime_recommender.constant import *
|
9 |
|
|
|
42 |
recommender = ContentBasedRecommender(df=df )
|
43 |
|
44 |
# Save the model (TF-IDF and cosine similarity matrix)
|
45 |
+
recommender.save_model(model_path=self.content_based_model_trainer_config.cosine_similarity_model_file_path)
|
46 |
+
upload_model_to_huggingface(
|
47 |
+
model_path=self.content_based_model_trainer_config.cosine_similarity_model_file_path,
|
48 |
+
repo_id=MODELS_FILEPATH,
|
49 |
+
filename=MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME
|
50 |
+
)
|
51 |
logging.info("Model saved successfully.")
|
52 |
|
53 |
logging.info("Loading saved model to get recommendations...")
|
anime_recommender/constant/__init__.py
CHANGED
@@ -36,5 +36,4 @@ MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME: str = "itembasedknn.pkl"
|
|
36 |
MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME: str = "userbasedknn.pkl"
|
37 |
|
38 |
MODEL_TRAINER_CON_TRAINED_MODEL_DIR:str = "content_based_recommenders"
|
39 |
-
MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME:str = "cosine_similarity.pkl"
|
40 |
-
|
|
|
36 |
MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME: str = "userbasedknn.pkl"
|
37 |
|
38 |
MODEL_TRAINER_CON_TRAINED_MODEL_DIR:str = "content_based_recommenders"
|
39 |
+
MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME:str = "cosine_similarity.pkl"
|
|
anime_recommender/exception/exception.py
CHANGED
@@ -2,14 +2,14 @@ import sys
|
|
2 |
|
3 |
class AnimeRecommendorException(Exception):
|
4 |
"""
|
5 |
-
Custom exception class for handling errors in the
|
6 |
|
7 |
This class captures the error message, file name, and line number where an exception occurred.
|
8 |
It is useful for debugging and identifying the source of the error in a structured way.
|
9 |
"""
|
10 |
def __init__(self,error_message, error_details:sys):
|
11 |
"""
|
12 |
-
Initialize the
|
13 |
|
14 |
Args:
|
15 |
error_message (str): The error message describing the exception.
|
|
|
2 |
|
3 |
class AnimeRecommendorException(Exception):
|
4 |
"""
|
5 |
+
Custom exception class for handling errors in the Anime Recommendation project.
|
6 |
|
7 |
This class captures the error message, file name, and line number where an exception occurred.
|
8 |
It is useful for debugging and identifying the source of the error in a structured way.
|
9 |
"""
|
10 |
def __init__(self,error_message, error_details:sys):
|
11 |
"""
|
12 |
+
Initialize the AnimeRecommendorException instance.
|
13 |
|
14 |
Args:
|
15 |
error_message (str): The error message describing the exception.
|
anime_recommender/pipelines/training_pipeline.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import sys
|
2 |
from anime_recommender.loggers.logging import logging
|
3 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
4 |
-
|
5 |
from anime_recommender.components.data_ingestion import DataIngestion
|
6 |
from anime_recommender.components.data_transformation import DataTransformation
|
7 |
from anime_recommender.components.collaborative_recommender import CollaborativeModelTrainer
|
@@ -80,7 +79,7 @@ class TrainingPipeline:
|
|
80 |
collaborative_model_trainer_config=collaborative_model_config,
|
81 |
data_transformation_artifact=data_transformation_artifact
|
82 |
)
|
83 |
-
collaborative_model_trainer_artifact = collaborative_model_trainer.initiate_model_trainer(
|
84 |
logging.info(f"Collaborative Model Training completed: {collaborative_model_trainer_artifact}")
|
85 |
return collaborative_model_trainer_artifact
|
86 |
except Exception as e:
|
|
|
1 |
import sys
|
2 |
from anime_recommender.loggers.logging import logging
|
3 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
|
|
4 |
from anime_recommender.components.data_ingestion import DataIngestion
|
5 |
from anime_recommender.components.data_transformation import DataTransformation
|
6 |
from anime_recommender.components.collaborative_recommender import CollaborativeModelTrainer
|
|
|
79 |
collaborative_model_trainer_config=collaborative_model_config,
|
80 |
data_transformation_artifact=data_transformation_artifact
|
81 |
)
|
82 |
+
collaborative_model_trainer_artifact = collaborative_model_trainer.initiate_model_trainer()
|
83 |
logging.info(f"Collaborative Model Training completed: {collaborative_model_trainer_artifact}")
|
84 |
return collaborative_model_trainer_artifact
|
85 |
except Exception as e:
|
anime_recommender/utils/main_utils/utils.py
CHANGED
@@ -5,6 +5,7 @@ import joblib
|
|
5 |
from anime_recommender.loggers.logging import logging
|
6 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
7 |
from anime_recommender.constant import *
|
|
|
8 |
|
9 |
def export_data_to_dataframe(dataframe: pd.DataFrame, file_path: str) -> pd.DataFrame:
|
10 |
"""
|
@@ -86,4 +87,26 @@ def load_object(file_path: str) -> object:
|
|
86 |
return joblib.load(file_obj)
|
87 |
except Exception as e:
|
88 |
logging.error(f"Error loading object from {file_path}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
raise AnimeRecommendorException(e, sys) from e
|
|
|
5 |
from anime_recommender.loggers.logging import logging
|
6 |
from anime_recommender.exception.exception import AnimeRecommendorException
|
7 |
from anime_recommender.constant import *
|
8 |
+
from huggingface_hub import HfApi, HfFolder
|
9 |
|
10 |
def export_data_to_dataframe(dataframe: pd.DataFrame, file_path: str) -> pd.DataFrame:
|
11 |
"""
|
|
|
87 |
return joblib.load(file_obj)
|
88 |
except Exception as e:
|
89 |
logging.error(f"Error loading object from {file_path}: {e}")
|
90 |
+
raise AnimeRecommendorException(e, sys) from e
|
91 |
+
|
92 |
+
def upload_model_to_huggingface(model_path: str, repo_id: str, filename: str):
|
93 |
+
"""
|
94 |
+
Uploads a trained model file to the specified Hugging Face repository.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
model_path (str): Local path of the trained model file.
|
98 |
+
repo_id (str): Hugging Face repository ID (e.g., 'krishnaveni76/anime-recommendation-models').
|
99 |
+
filename (str): Name of the file when uploaded to Hugging Face.
|
100 |
+
"""
|
101 |
+
try:
|
102 |
+
api = HfApi()
|
103 |
+
api.upload_file(
|
104 |
+
path_or_fileobj=model_path,
|
105 |
+
path_in_repo=filename,
|
106 |
+
repo_id=repo_id,
|
107 |
+
repo_type="model"
|
108 |
+
)
|
109 |
+
logging.info(f"Successfully uploaded {filename} to Hugging Face: {repo_id}")
|
110 |
+
except Exception as e:
|
111 |
+
logging.info(f"Error uploading model to Hugging Face: {str(e)}")
|
112 |
raise AnimeRecommendorException(e, sys) from e
|
app.py
CHANGED
@@ -1,242 +1,242 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import streamlit as st
|
3 |
-
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender
|
4 |
-
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender
|
5 |
-
from anime_recommender.model_trainer.top_anime_filtering import PopularityBasedFiltering
|
6 |
-
import joblib
|
7 |
-
from anime_recommender.constant import *
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
from datasets import load_dataset
|
10 |
-
|
11 |
-
def run_app():
|
12 |
-
"""
|
13 |
-
Initializes the Streamlit app, loads necessary datasets and models,
|
14 |
-
and provides a UI for anime recommendations based on three methods:
|
15 |
-
Content-Based, Collaborative, and Popularity-Based Filtering. 🎬🎮
|
16 |
-
"""
|
17 |
-
|
18 |
-
# Set page configuration
|
19 |
-
st.set_page_config(page_title="Anime Recommendation System", layout="wide")
|
20 |
-
|
21 |
-
# Load datasets if not present in session state
|
22 |
-
if "anime_data" not in st.session_state or "anime_user_ratings" not in st.session_state:
|
23 |
-
# Load datasets from Hugging Face (assuming no splits)
|
24 |
-
animedataset = load_dataset(ANIME_FILE_PATH, split=None)
|
25 |
-
mergeddataset = load_dataset(ANIMEUSERRATINGS_FILE_PATH, split=None)
|
26 |
-
|
27 |
-
# Convert the dataset to Pandas DataFrame
|
28 |
-
st.session_state.anime_data = pd.DataFrame(animedataset["train"])
|
29 |
-
st.session_state.anime_user_ratings = pd.DataFrame(mergeddataset["train"])
|
30 |
-
|
31 |
-
# Load models only once
|
32 |
-
if "models_loaded" not in st.session_state:
|
33 |
-
st.session_state.models_loaded = {}
|
34 |
-
# Load models
|
35 |
-
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
36 |
-
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
37 |
-
st.session_state.models_loaded["user_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME)
|
38 |
-
st.session_state.models_loaded["svd_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_SVD_TRAINED_MODEL_NAME)
|
39 |
-
|
40 |
-
# Load the models using joblib
|
41 |
-
with open(st.session_state.models_loaded["item_based_knn_model_path"], "rb") as f:
|
42 |
-
st.session_state.models_loaded["item_based_knn_model"] = joblib.load(f)
|
43 |
-
|
44 |
-
with open(st.session_state.models_loaded["user_based_knn_model_path"], "rb") as f:
|
45 |
-
st.session_state.models_loaded["user_based_knn_model"] = joblib.load(f)
|
46 |
-
|
47 |
-
with open(st.session_state.models_loaded["svd_model_path"], "rb") as f:
|
48 |
-
st.session_state.models_loaded["svd_model"] = joblib.load(f)
|
49 |
-
|
50 |
-
print("Models loaded successfully!")
|
51 |
-
|
52 |
-
# Access the data from session state
|
53 |
-
anime_data = st.session_state.anime_data
|
54 |
-
anime_user_ratings = st.session_state.anime_user_ratings
|
55 |
-
|
56 |
-
# # Display dataset info
|
57 |
-
# st.write("Anime Data:")
|
58 |
-
# st.dataframe(anime_data.head())
|
59 |
-
|
60 |
-
# st.write("Anime User Ratings Data:")
|
61 |
-
# st.dataframe(anime_user_ratings.head())
|
62 |
-
|
63 |
-
# Access the models from session state
|
64 |
-
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
65 |
-
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
66 |
-
user_based_knn_model = st.session_state.models_loaded["user_based_knn_model"]
|
67 |
-
svd_model = st.session_state.models_loaded["svd_model"]
|
68 |
-
print("Models loaded successfully!")
|
69 |
-
|
70 |
-
# Streamlit UI
|
71 |
-
app_selector = st.sidebar.radio(
|
72 |
-
"Select App", ("Content-Based Recommender", "Collaborative Recommender", "Top Anime Recommender")
|
73 |
-
)
|
74 |
-
|
75 |
-
# Content-Based Recommender App
|
76 |
-
if app_selector == "Content-Based Recommender":
|
77 |
-
st.title("Content-Based Recommendation System")
|
78 |
-
try:
|
79 |
-
|
80 |
-
anime_list = anime_data["name"].tolist()
|
81 |
-
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list)
|
82 |
-
|
83 |
-
# Set number of recommendations
|
84 |
-
max_recommendations = min(len(anime_data), 100)
|
85 |
-
n_recommendations = st.slider("Number of Recommendations", 1, max_recommendations, 10)
|
86 |
-
|
87 |
-
# Inject custom CSS for anime name font size
|
88 |
-
st.markdown(
|
89 |
-
"""
|
90 |
-
<style>
|
91 |
-
.anime-title {
|
92 |
-
font-size: 14px !important;
|
93 |
-
font-weight: bold;
|
94 |
-
text-align: center;
|
95 |
-
margin-top: 5px;
|
96 |
-
}
|
97 |
-
</style>
|
98 |
-
""",
|
99 |
-
unsafe_allow_html=True,
|
100 |
-
)
|
101 |
-
# Get Recommendations
|
102 |
-
if st.button("Get Recommendations"):
|
103 |
-
try:
|
104 |
-
recommender = ContentBasedRecommender(anime_data)
|
105 |
-
recommendations = recommender.get_rec_cosine(anime_name, n_recommendations=n_recommendations,model_path=cosine_similarity_model_path)
|
106 |
-
|
107 |
-
if isinstance(recommendations, str):
|
108 |
-
st.warning(recommendations)
|
109 |
-
elif recommendations.empty:
|
110 |
-
st.warning("No recommendations found.🧐")
|
111 |
-
else:
|
112 |
-
st.write(f"Here are the Content-based Recommendations for {anime_name}:")
|
113 |
-
cols = st.columns(5)
|
114 |
-
for i, row in enumerate(recommendations.iterrows()):
|
115 |
-
col = cols[i % 5]
|
116 |
-
with col:
|
117 |
-
st.image(row[1]['Image URL'], use_container_width=True)
|
118 |
-
st.markdown(
|
119 |
-
f"<div class='anime-title'>{row[1]['Anime name']}</div>",
|
120 |
-
unsafe_allow_html=True,
|
121 |
-
)
|
122 |
-
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
123 |
-
except Exception as e:
|
124 |
-
st.error(f"Unexpected error: {str(e)}")
|
125 |
-
|
126 |
-
except Exception as e:
|
127 |
-
st.error(f"Unexpected error: {str(e)}")
|
128 |
-
|
129 |
-
elif app_selector == "Collaborative Recommender":
|
130 |
-
st.title("Collaborative Recommender System 🧑🤝🧑💬")
|
131 |
-
|
132 |
-
try:
|
133 |
-
# Sidebar for choosing the collaborative filtering method
|
134 |
-
collaborative_method = st.sidebar.selectbox(
|
135 |
-
"Choose a collaborative filtering method:",
|
136 |
-
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
137 |
-
)
|
138 |
-
|
139 |
-
# User input
|
140 |
-
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
141 |
-
user_ids = anime_user_ratings['user_id'].unique()
|
142 |
-
user_id = st.selectbox("Select your MyAnimeList user ID to get anime recommendations based on similar users", user_ids)
|
143 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
144 |
-
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
145 |
-
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
146 |
-
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
147 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
148 |
-
|
149 |
-
# Get recommendations
|
150 |
-
if st.button("Get Recommendations"):
|
151 |
-
# Load the recommender
|
152 |
-
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
153 |
-
if collaborative_method == "SVD Collaborative Filtering":
|
154 |
-
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
155 |
-
elif collaborative_method == "User-Based Collaborative Filtering":
|
156 |
-
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
157 |
-
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
158 |
-
if anime_name:
|
159 |
-
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model)
|
160 |
-
else:
|
161 |
-
st.error("Invalid Anime Name. Please enter a valid anime title.")
|
162 |
-
|
163 |
-
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
164 |
-
if len(recommendations) < n_recommendations:
|
165 |
-
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
166 |
-
st.write(f"Here are the {collaborative_method} Recommendations:")
|
167 |
-
cols = st.columns(5)
|
168 |
-
for i, row in enumerate(recommendations.iterrows()):
|
169 |
-
col = cols[i % 5]
|
170 |
-
with col:
|
171 |
-
st.image(row[1]['Image URL'], use_container_width=True)
|
172 |
-
st.markdown(
|
173 |
-
f"<div class='anime-title'>{row[1]['Anime Name']}</div>",
|
174 |
-
unsafe_allow_html=True,
|
175 |
-
)
|
176 |
-
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
177 |
-
else:
|
178 |
-
st.error("No recommendations found.")
|
179 |
-
except Exception as e:
|
180 |
-
st.error(f"An error occurred: {e}")
|
181 |
-
|
182 |
-
elif app_selector == "Top Anime Recommender":
|
183 |
-
st.title("Top Anime Recommender System 🔥")
|
184 |
-
|
185 |
-
try:
|
186 |
-
popularity_method = st.sidebar.selectbox(
|
187 |
-
"Choose a Popularity-Based Filtering method:",
|
188 |
-
[
|
189 |
-
"Popular Animes",
|
190 |
-
"Top Ranked Animes",
|
191 |
-
"Overall Top Rated Animes",
|
192 |
-
"Favorite Animes",
|
193 |
-
"Top Animes by Members",
|
194 |
-
"Popular Anime Among Members",
|
195 |
-
"Top Average Rated Animes",
|
196 |
-
]
|
197 |
-
)
|
198 |
-
|
199 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500 , value=10)
|
200 |
-
|
201 |
-
if st.button("Get Recommendations"):
|
202 |
-
recommender = PopularityBasedFiltering(anime_data)
|
203 |
-
|
204 |
-
# Get recommendations based on selected method
|
205 |
-
if popularity_method == "Popular Animes":
|
206 |
-
recommendations = recommender.popular_animes(n=n_recommendations)
|
207 |
-
elif popularity_method == "Top Ranked Animes":
|
208 |
-
recommendations = recommender.top_ranked_animes(n=n_recommendations)
|
209 |
-
elif popularity_method == "Overall Top Rated Animes":
|
210 |
-
recommendations = recommender.overall_top_rated_animes(n=n_recommendations)
|
211 |
-
elif popularity_method == "Favorite Animes":
|
212 |
-
recommendations = recommender.favorite_animes(n=n_recommendations)
|
213 |
-
elif popularity_method == "Top Animes by Members":
|
214 |
-
recommendations = recommender.top_animes_members(n=n_recommendations)
|
215 |
-
elif popularity_method == "Popular Anime Among Members":
|
216 |
-
recommendations = recommender.popular_anime_among_members(n=n_recommendations)
|
217 |
-
elif popularity_method == "Top Average Rated Animes":
|
218 |
-
recommendations = recommender.top_avg_rated(n=n_recommendations)
|
219 |
-
else:
|
220 |
-
st.error("Invalid selection. Please choose a valid method.")
|
221 |
-
recommendations = None
|
222 |
-
|
223 |
-
# Display recommendations
|
224 |
-
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
225 |
-
st.write(f" Here are the Recommendations:")
|
226 |
-
cols = st.columns(5)
|
227 |
-
for i, row in recommendations.iterrows():
|
228 |
-
col = cols[i % 5]
|
229 |
-
with col:
|
230 |
-
st.image(row['Image URL'], use_container_width=True)
|
231 |
-
st.markdown(
|
232 |
-
f"<div class='anime-title'>{row['Anime name']}</div>",
|
233 |
-
unsafe_allow_html=True,
|
234 |
-
)
|
235 |
-
st.caption(f"Genres: {row['Genres']} | Rating: {row['Rating']}")
|
236 |
-
else:
|
237 |
-
st.error("No recommendations found.")
|
238 |
-
except Exception as e:
|
239 |
-
st.error(f"An error occurred: {e}")
|
240 |
-
|
241 |
-
if __name__ == "__main__":
|
242 |
run_app()
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender
|
4 |
+
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender
|
5 |
+
from anime_recommender.model_trainer.top_anime_filtering import PopularityBasedFiltering
|
6 |
+
import joblib
|
7 |
+
from anime_recommender.constant import *
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
def run_app():
|
12 |
+
"""
|
13 |
+
Initializes the Streamlit app, loads necessary datasets and models,
|
14 |
+
and provides a UI for anime recommendations based on three methods:
|
15 |
+
Content-Based, Collaborative, and Popularity-Based Filtering. 🎬🎮
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Set page configuration
|
19 |
+
st.set_page_config(page_title="Anime Recommendation System", layout="wide")
|
20 |
+
|
21 |
+
# Load datasets if not present in session state
|
22 |
+
if "anime_data" not in st.session_state or "anime_user_ratings" not in st.session_state:
|
23 |
+
# Load datasets from Hugging Face (assuming no splits)
|
24 |
+
animedataset = load_dataset(ANIME_FILE_PATH, split=None)
|
25 |
+
mergeddataset = load_dataset(ANIMEUSERRATINGS_FILE_PATH, split=None)
|
26 |
+
|
27 |
+
# Convert the dataset to Pandas DataFrame
|
28 |
+
st.session_state.anime_data = pd.DataFrame(animedataset["train"])
|
29 |
+
st.session_state.anime_user_ratings = pd.DataFrame(mergeddataset["train"])
|
30 |
+
|
31 |
+
# Load models only once
|
32 |
+
if "models_loaded" not in st.session_state:
|
33 |
+
st.session_state.models_loaded = {}
|
34 |
+
# Load models
|
35 |
+
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
36 |
+
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
37 |
+
st.session_state.models_loaded["user_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME)
|
38 |
+
st.session_state.models_loaded["svd_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_SVD_TRAINED_MODEL_NAME)
|
39 |
+
|
40 |
+
# Load the models using joblib
|
41 |
+
with open(st.session_state.models_loaded["item_based_knn_model_path"], "rb") as f:
|
42 |
+
st.session_state.models_loaded["item_based_knn_model"] = joblib.load(f)
|
43 |
+
|
44 |
+
with open(st.session_state.models_loaded["user_based_knn_model_path"], "rb") as f:
|
45 |
+
st.session_state.models_loaded["user_based_knn_model"] = joblib.load(f)
|
46 |
+
|
47 |
+
with open(st.session_state.models_loaded["svd_model_path"], "rb") as f:
|
48 |
+
st.session_state.models_loaded["svd_model"] = joblib.load(f)
|
49 |
+
|
50 |
+
print("Models loaded successfully!")
|
51 |
+
|
52 |
+
# Access the data from session state
|
53 |
+
anime_data = st.session_state.anime_data
|
54 |
+
anime_user_ratings = st.session_state.anime_user_ratings
|
55 |
+
|
56 |
+
# # Display dataset info
|
57 |
+
# st.write("Anime Data:")
|
58 |
+
# st.dataframe(anime_data.head())
|
59 |
+
|
60 |
+
# st.write("Anime User Ratings Data:")
|
61 |
+
# st.dataframe(anime_user_ratings.head())
|
62 |
+
|
63 |
+
# Access the models from session state
|
64 |
+
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
65 |
+
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
66 |
+
user_based_knn_model = st.session_state.models_loaded["user_based_knn_model"]
|
67 |
+
svd_model = st.session_state.models_loaded["svd_model"]
|
68 |
+
print("Models loaded successfully!")
|
69 |
+
|
70 |
+
# Streamlit UI
|
71 |
+
app_selector = st.sidebar.radio(
|
72 |
+
"Select App", ("Content-Based Recommender", "Collaborative Recommender", "Top Anime Recommender")
|
73 |
+
)
|
74 |
+
|
75 |
+
# Content-Based Recommender App
|
76 |
+
if app_selector == "Content-Based Recommender":
|
77 |
+
st.title("Content-Based Recommendation System")
|
78 |
+
try:
|
79 |
+
|
80 |
+
anime_list = anime_data["name"].tolist()
|
81 |
+
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list)
|
82 |
+
|
83 |
+
# Set number of recommendations
|
84 |
+
max_recommendations = min(len(anime_data), 100)
|
85 |
+
n_recommendations = st.slider("Number of Recommendations", 1, max_recommendations, 10)
|
86 |
+
|
87 |
+
# Inject custom CSS for anime name font size
|
88 |
+
st.markdown(
|
89 |
+
"""
|
90 |
+
<style>
|
91 |
+
.anime-title {
|
92 |
+
font-size: 14px !important;
|
93 |
+
font-weight: bold;
|
94 |
+
text-align: center;
|
95 |
+
margin-top: 5px;
|
96 |
+
}
|
97 |
+
</style>
|
98 |
+
""",
|
99 |
+
unsafe_allow_html=True,
|
100 |
+
)
|
101 |
+
# Get Recommendations
|
102 |
+
if st.button("Get Recommendations"):
|
103 |
+
try:
|
104 |
+
recommender = ContentBasedRecommender(anime_data)
|
105 |
+
recommendations = recommender.get_rec_cosine(anime_name, n_recommendations=n_recommendations,model_path=cosine_similarity_model_path)
|
106 |
+
|
107 |
+
if isinstance(recommendations, str):
|
108 |
+
st.warning(recommendations)
|
109 |
+
elif recommendations.empty:
|
110 |
+
st.warning("No recommendations found.🧐")
|
111 |
+
else:
|
112 |
+
st.write(f"Here are the Content-based Recommendations for {anime_name}:")
|
113 |
+
cols = st.columns(5)
|
114 |
+
for i, row in enumerate(recommendations.iterrows()):
|
115 |
+
col = cols[i % 5]
|
116 |
+
with col:
|
117 |
+
st.image(row[1]['Image URL'], use_container_width=True)
|
118 |
+
st.markdown(
|
119 |
+
f"<div class='anime-title'>{row[1]['Anime name']}</div>",
|
120 |
+
unsafe_allow_html=True,
|
121 |
+
)
|
122 |
+
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Unexpected error: {str(e)}")
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
st.error(f"Unexpected error: {str(e)}")
|
128 |
+
|
129 |
+
elif app_selector == "Collaborative Recommender":
|
130 |
+
st.title("Collaborative Recommender System 🧑🤝🧑💬")
|
131 |
+
|
132 |
+
try:
|
133 |
+
# Sidebar for choosing the collaborative filtering method
|
134 |
+
collaborative_method = st.sidebar.selectbox(
|
135 |
+
"Choose a collaborative filtering method:",
|
136 |
+
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
137 |
+
)
|
138 |
+
|
139 |
+
# User input
|
140 |
+
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
141 |
+
user_ids = anime_user_ratings['user_id'].unique()
|
142 |
+
user_id = st.selectbox("Select your MyAnimeList user ID to get anime recommendations based on similar users", user_ids)
|
143 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
144 |
+
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
145 |
+
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
146 |
+
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
147 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
148 |
+
|
149 |
+
# Get recommendations
|
150 |
+
if st.button("Get Recommendations"):
|
151 |
+
# Load the recommender
|
152 |
+
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
153 |
+
if collaborative_method == "SVD Collaborative Filtering":
|
154 |
+
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
155 |
+
elif collaborative_method == "User-Based Collaborative Filtering":
|
156 |
+
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
157 |
+
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
158 |
+
if anime_name:
|
159 |
+
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model)
|
160 |
+
else:
|
161 |
+
st.error("Invalid Anime Name. Please enter a valid anime title.")
|
162 |
+
|
163 |
+
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
164 |
+
if len(recommendations) < n_recommendations:
|
165 |
+
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
166 |
+
st.write(f"Here are the {collaborative_method} Recommendations:")
|
167 |
+
cols = st.columns(5)
|
168 |
+
for i, row in enumerate(recommendations.iterrows()):
|
169 |
+
col = cols[i % 5]
|
170 |
+
with col:
|
171 |
+
st.image(row[1]['Image URL'], use_container_width=True)
|
172 |
+
st.markdown(
|
173 |
+
f"<div class='anime-title'>{row[1]['Anime Name']}</div>",
|
174 |
+
unsafe_allow_html=True,
|
175 |
+
)
|
176 |
+
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
177 |
+
else:
|
178 |
+
st.error("No recommendations found.")
|
179 |
+
except Exception as e:
|
180 |
+
st.error(f"An error occurred: {e}")
|
181 |
+
|
182 |
+
elif app_selector == "Top Anime Recommender":
|
183 |
+
st.title("Top Anime Recommender System 🔥")
|
184 |
+
|
185 |
+
try:
|
186 |
+
popularity_method = st.sidebar.selectbox(
|
187 |
+
"Choose a Popularity-Based Filtering method:",
|
188 |
+
[
|
189 |
+
"Popular Animes",
|
190 |
+
"Top Ranked Animes",
|
191 |
+
"Overall Top Rated Animes",
|
192 |
+
"Favorite Animes",
|
193 |
+
"Top Animes by Members",
|
194 |
+
"Popular Anime Among Members",
|
195 |
+
"Top Average Rated Animes",
|
196 |
+
]
|
197 |
+
)
|
198 |
+
|
199 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500 , value=10)
|
200 |
+
|
201 |
+
if st.button("Get Recommendations"):
|
202 |
+
recommender = PopularityBasedFiltering(anime_data)
|
203 |
+
|
204 |
+
# Get recommendations based on selected method
|
205 |
+
if popularity_method == "Popular Animes":
|
206 |
+
recommendations = recommender.popular_animes(n=n_recommendations)
|
207 |
+
elif popularity_method == "Top Ranked Animes":
|
208 |
+
recommendations = recommender.top_ranked_animes(n=n_recommendations)
|
209 |
+
elif popularity_method == "Overall Top Rated Animes":
|
210 |
+
recommendations = recommender.overall_top_rated_animes(n=n_recommendations)
|
211 |
+
elif popularity_method == "Favorite Animes":
|
212 |
+
recommendations = recommender.favorite_animes(n=n_recommendations)
|
213 |
+
elif popularity_method == "Top Animes by Members":
|
214 |
+
recommendations = recommender.top_animes_members(n=n_recommendations)
|
215 |
+
elif popularity_method == "Popular Anime Among Members":
|
216 |
+
recommendations = recommender.popular_anime_among_members(n=n_recommendations)
|
217 |
+
elif popularity_method == "Top Average Rated Animes":
|
218 |
+
recommendations = recommender.top_avg_rated(n=n_recommendations)
|
219 |
+
else:
|
220 |
+
st.error("Invalid selection. Please choose a valid method.")
|
221 |
+
recommendations = None
|
222 |
+
|
223 |
+
# Display recommendations
|
224 |
+
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
225 |
+
st.write(f" Here are the Recommendations:")
|
226 |
+
cols = st.columns(5)
|
227 |
+
for i, row in recommendations.iterrows():
|
228 |
+
col = cols[i % 5]
|
229 |
+
with col:
|
230 |
+
st.image(row['Image URL'], use_container_width=True)
|
231 |
+
st.markdown(
|
232 |
+
f"<div class='anime-title'>{row['Anime name']}</div>",
|
233 |
+
unsafe_allow_html=True,
|
234 |
+
)
|
235 |
+
st.caption(f"Genres: {row['Genres']} | Rating: {row['Rating']}")
|
236 |
+
else:
|
237 |
+
st.error("No recommendations found.")
|
238 |
+
except Exception as e:
|
239 |
+
st.error(f"An error occurred: {e}")
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
run_app()
|
logs/{02_03_2025_11_40_31.log → 02_08_2025_12_23_10.log}
RENAMED
@@ -1,51 +1,51 @@
|
|
1 |
-
[ 2025-02-
|
2 |
-
[ 2025-02-
|
3 |
-
[ 2025-02-
|
4 |
-
[ 2025-02-
|
5 |
-
[ 2025-02-
|
6 |
'episodes', 'producers', 'licensors', 'studios', 'source',
|
7 |
'anime_rating', 'rank', 'popularity', 'favorites', 'scored by',
|
8 |
'members', 'image url'],
|
9 |
dtype='object')
|
10 |
-
[ 2025-02-
|
11 |
-
anime_id genres
|
12 |
-
0 32281 Drama, Romance, School, Supernatural
|
13 |
-
1 5114 Action, Adventure, Drama, Fantasy, Magic, Mili...
|
14 |
-
2 28977 Action, Comedy, Historical, Parody, Samurai, S...
|
15 |
-
3 9253 Sci-Fi, Thriller
|
16 |
-
4 9969 Action, Comedy, Historical, Parody, Samurai, S...
|
17 |
|
18 |
[5 rows x 18 columns]
|
19 |
-
[ 2025-02-
|
20 |
-
[ 2025-02-
|
21 |
-
[ 2025-02-
|
22 |
-
[ 2025-02-
|
23 |
-
[ 2025-02-
|
24 |
user_id username anime_id rating
|
25 |
0 357 zhambi 35427 5
|
26 |
1 357 zhambi 28391 6
|
27 |
2 357 zhambi 36649 7
|
28 |
3 357 zhambi 530 6
|
29 |
4 357 zhambi 37451 7
|
30 |
-
[ 2025-02-
|
31 |
-
[ 2025-02-
|
32 |
-
[ 2025-02-
|
33 |
-
[ 2025-02-
|
34 |
-
[ 2025-02-
|
35 |
-
[ 2025-02-
|
36 |
-
[ 2025-02-
|
37 |
-
[ 2025-02-
|
38 |
-
[ 2025-02-
|
39 |
-
[ 2025-02-
|
40 |
'average_rating', 'overview', 'type', 'episodes', 'producers',
|
41 |
'licensors', 'studios', 'source', 'anime_rating', 'rank', 'popularity',
|
42 |
'favorites', 'scored by', 'members', 'image url'],
|
43 |
dtype='object')
|
44 |
-
[ 2025-02-
|
45 |
-
[ 2025-02-
|
46 |
'anime_rating', 'image url'],
|
47 |
dtype='object')
|
48 |
-
[ 2025-02-
|
49 |
user_id anime_id rating ... average_rating anime_rating image url
|
50 |
0 357 28391 6 ... 6.65 PG-13 - Teens 13 or older https://cdn.myanimelist.net/images/anime/9/778...
|
51 |
1 357 530 6 ... 7.73 PG-13 - Teens 13 or older https://cdn.myanimelist.net/images/anime/1440/...
|
@@ -54,25 +54,70 @@
|
|
54 |
5 357 31798 9 ... 7.38 PG-13 - Teens 13 or older https://cdn.myanimelist.net/images/anime/6/784...
|
55 |
|
56 |
[5 rows x 8 columns]
|
57 |
-
[ 2025-02-
|
58 |
-
[ 2025-02-
|
59 |
-
[ 2025-02-
|
60 |
-
[ 2025-02-
|
61 |
-
[ 2025-02-
|
62 |
-
[ 2025-02-
|
63 |
-
[ 2025-02-
|
64 |
-
[ 2025-02-
|
65 |
-
[ 2025-02-
|
66 |
-
[ 2025-02-
|
67 |
-
[ 2025-02-
|
68 |
-
[ 2025-02-
|
69 |
-
[ 2025-02-
|
70 |
-
[ 2025-02-
|
71 |
-
[ 2025-02-
|
72 |
-
[ 2025-02-
|
73 |
-
[ 2025-02-
|
74 |
-
[ 2025-02-
|
75 |
-
[ 2025-02-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
0 Little Busters! Refrain https://cdn.myanimelist.net/images/anime/10/55... Comedy, Drama, Romance, School, Slice of Life,... 8.19
|
77 |
1 Chuunibyou demo Koi ga Shitai! Ren https://cdn.myanimelist.net/images/anime/7/566... Comedy, Drama, Romance, School, Slice of Life 7.55
|
78 |
2 Clannad: Mou Hitotsu no Sekai, Tomoyo-hen https://cdn.myanimelist.net/images/anime/12/19... Drama, Romance, School, Slice of Life 7.93
|
@@ -83,20 +128,21 @@
|
|
83 |
7 Motto To LOVE-Ru https://cdn.myanimelist.net/images/anime/4/598... Comedy, Ecchi, Harem, School, Sci-Fi, Shounen 7.28
|
84 |
8 Overlord https://cdn.myanimelist.net/images/anime/7/880... Action, Adventure, Fantasy, Game, Magic, Super... 7.91
|
85 |
9 No.6 https://cdn.myanimelist.net/images/anime/1474/... Action, Sci-Fi 7.56
|
86 |
-
[ 2025-02-
|
87 |
-
[ 2025-02-
|
88 |
-
[ 2025-02-
|
89 |
-
[ 2025-02-
|
90 |
-
[ 2025-02-
|
91 |
-
[ 2025-02-
|
92 |
-
[ 2025-02-
|
93 |
-
[ 2025-02-
|
94 |
-
[ 2025-02-
|
95 |
-
[ 2025-02-
|
96 |
-
[ 2025-02-
|
97 |
-
[ 2025-02-
|
98 |
-
[ 2025-02-
|
99 |
-
[ 2025-02-
|
|
|
100 |
0 One Piece: Episode of Merry - Mou Hitori no Na... https://cdn.myanimelist.net/images/anime/9/610... Action, Adventure, Comedy, Drama, Fantasy, Sho... 8.19
|
101 |
1 One Piece: Episode of Nami - Koukaishi no Nami... https://cdn.myanimelist.net/images/anime/5/414... Action, Adventure, Comedy, Drama, Fantasy, Sho... 8.12
|
102 |
2 One Piece: Episode of Sabo - 3 Kyoudai no Kizu... https://cdn.myanimelist.net/images/anime/1373/... Action, Adventure, Comedy, Drama, Fantasy, Sho... 7.71
|
@@ -107,14 +153,14 @@
|
|
107 |
7 Digimon Frontier https://cdn.myanimelist.net/images/anime/1048/... Action, Adventure, Comedy, Drama, Fantasy, Sho... 7.15
|
108 |
8 Digimon Tamers https://cdn.myanimelist.net/images/anime/7/736... Adventure, Comedy, Drama, Fantasy, Shounen 7.63
|
109 |
9 Digimon Savers https://cdn.myanimelist.net/images/anime/1415/... Adventure, Comedy, Drama, Fantasy, Shounen 6.95
|
110 |
-
[ 2025-02-
|
111 |
-
[ 2025-02-
|
112 |
-
[ 2025-02-
|
113 |
-
[ 2025-02-
|
114 |
-
[ 2025-02-
|
115 |
-
[ 2025-02-
|
116 |
-
[ 2025-02-
|
117 |
-
[ 2025-02-
|
118 |
0 Shingeki no Kyojin https://cdn.myanimelist.net/images/anime/10/47... Action, Drama, Fantasy, Shounen, Super Power 8.54
|
119 |
1 Death Note https://cdn.myanimelist.net/images/anime/9/945... Mystery, Police, Psychological, Supernatural, ... 8.62
|
120 |
2 Fullmetal Alchemist: Brotherhood https://cdn.myanimelist.net/images/anime/1208/... Action, Adventure, Drama, Fantasy, Magic, Mili... 9.10
|
@@ -125,5 +171,5 @@
|
|
125 |
7 Tokyo Ghoul https://cdn.myanimelist.net/images/anime/1498/... Action, Drama, Horror, Mystery, Psychological,... 7.79
|
126 |
8 Hunter x Hunter (2011) https://cdn.myanimelist.net/images/anime/1337/... Action, Adventure, Shounen, Super Power 9.04
|
127 |
9 Kimi no Na wa. https://cdn.myanimelist.net/images/anime/5/870... Drama, Romance, School, Supernatural 8.85
|
128 |
-
[ 2025-02-
|
129 |
-
[ 2025-02-
|
|
|
1 |
+
[ 2025-02-08 12:23:14,445 ] 8 root - INFO - Starting the Anime Recommendation System Training Pipeline...
|
2 |
+
[ 2025-02-08 12:23:14,445 ] 41 root - INFO - Initiating Data Ingestion...
|
3 |
+
[ 2025-02-08 12:23:14,445 ] 40 root - INFO - Fetching data from Hugging Face dataset: krishnaveni76/Animes
|
4 |
+
[ 2025-02-08 12:23:20,052 ] 48 root - INFO - Shape of the dataframe: (12194, 18)
|
5 |
+
[ 2025-02-08 12:23:20,052 ] 49 root - INFO - Column names: Index(['anime_id', 'genres', 'name', 'average_rating', 'overview', 'type',
|
6 |
'episodes', 'producers', 'licensors', 'studios', 'source',
|
7 |
'anime_rating', 'rank', 'popularity', 'favorites', 'scored by',
|
8 |
'members', 'image url'],
|
9 |
dtype='object')
|
10 |
+
[ 2025-02-08 12:23:20,072 ] 50 root - INFO - Preview of the DataFrame:
|
11 |
+
anime_id genres ... members image url
|
12 |
+
0 32281 Drama, Romance, School, Supernatural ... 2597495 https://cdn.myanimelist.net/images/anime/5/870...
|
13 |
+
1 5114 Action, Adventure, Drama, Fantasy, Magic, Mili... ... 3176556 https://cdn.myanimelist.net/images/anime/1208/...
|
14 |
+
2 28977 Action, Comedy, Historical, Parody, Samurai, S... ... 595767 https://cdn.myanimelist.net/images/anime/3/720...
|
15 |
+
3 9253 Sci-Fi, Thriller ... 2440369 https://cdn.myanimelist.net/images/anime/1935/...
|
16 |
+
4 9969 Action, Comedy, Historical, Parody, Samurai, S... ... 525688 https://cdn.myanimelist.net/images/anime/4/503...
|
17 |
|
18 |
[5 rows x 18 columns]
|
19 |
+
[ 2025-02-08 12:23:20,072 ] 51 root - INFO - Data fetched successfully from Hugging Face.
|
20 |
+
[ 2025-02-08 12:23:20,073 ] 40 root - INFO - Fetching data from Hugging Face dataset: krishnaveni76/UserRatings
|
21 |
+
[ 2025-02-08 12:24:00,180 ] 48 root - INFO - Shape of the dataframe: (1112830, 4)
|
22 |
+
[ 2025-02-08 12:24:00,181 ] 49 root - INFO - Column names: Index(['user_id', 'username', 'anime_id', 'rating'], dtype='object')
|
23 |
+
[ 2025-02-08 12:24:00,184 ] 50 root - INFO - Preview of the DataFrame:
|
24 |
user_id username anime_id rating
|
25 |
0 357 zhambi 35427 5
|
26 |
1 357 zhambi 28391 6
|
27 |
2 357 zhambi 36649 7
|
28 |
3 357 zhambi 530 6
|
29 |
4 357 zhambi 37451 7
|
30 |
+
[ 2025-02-08 12:24:00,184 ] 51 root - INFO - Data fetched successfully from Hugging Face.
|
31 |
+
[ 2025-02-08 12:24:00,187 ] 22 root - INFO - Saving DataFrame to file: Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/Animes.csv
|
32 |
+
[ 2025-02-08 12:24:00,356 ] 26 root - INFO - DataFrame saved successfully to Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/Animes.csv.
|
33 |
+
[ 2025-02-08 12:24:00,356 ] 22 root - INFO - Saving DataFrame to file: Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/UserRatings.csv
|
34 |
+
[ 2025-02-08 12:24:01,514 ] 26 root - INFO - DataFrame saved successfully to Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/UserRatings.csv.
|
35 |
+
[ 2025-02-08 12:24:01,581 ] 45 root - INFO - Data Ingestion completed: DataIngestionArtifact(feature_store_anime_file_path='Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/Animes.csv', feature_store_userrating_file_path='Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/UserRatings.csv')
|
36 |
+
[ 2025-02-08 12:24:01,582 ] 57 root - INFO - Initiating Data Transformation...
|
37 |
+
[ 2025-02-08 12:24:01,582 ] 95 root - INFO - Entering initiate_data_transformation method of DataTransformation class.
|
38 |
+
[ 2025-02-08 12:24:02,365 ] 54 root - INFO - Shape of the Merged dataframe:(916416, 21)
|
39 |
+
[ 2025-02-08 12:24:02,366 ] 55 root - INFO - Column names: Index(['user_id', 'username', 'anime_id', 'rating', 'genres', 'name',
|
40 |
'average_rating', 'overview', 'type', 'episodes', 'producers',
|
41 |
'licensors', 'studios', 'source', 'anime_rating', 'rank', 'popularity',
|
42 |
'favorites', 'scored by', 'members', 'image url'],
|
43 |
dtype='object')
|
44 |
+
[ 2025-02-08 12:24:03,520 ] 81 root - INFO - Shape of the Merged dataframe:(862804, 8)
|
45 |
+
[ 2025-02-08 12:24:03,520 ] 82 root - INFO - Column names: Index(['user_id', 'anime_id', 'rating', 'genres', 'name', 'average_rating',
|
46 |
'anime_rating', 'image url'],
|
47 |
dtype='object')
|
48 |
+
[ 2025-02-08 12:24:03,526 ] 83 root - INFO - Preview of the merged DataFrame:
|
49 |
user_id anime_id rating ... average_rating anime_rating image url
|
50 |
0 357 28391 6 ... 6.65 PG-13 - Teens 13 or older https://cdn.myanimelist.net/images/anime/9/778...
|
51 |
1 357 530 6 ... 7.73 PG-13 - Teens 13 or older https://cdn.myanimelist.net/images/anime/1440/...
|
|
|
54 |
5 357 31798 9 ... 7.38 PG-13 - Teens 13 or older https://cdn.myanimelist.net/images/anime/6/784...
|
55 |
|
56 |
[5 rows x 8 columns]
|
57 |
+
[ 2025-02-08 12:24:03,549 ] 22 root - INFO - Saving DataFrame to file: Artifacts/02_08_2025_12_23_12/data_transformation/transformed/Anime_UserRatings.csv
|
58 |
+
[ 2025-02-08 12:24:07,286 ] 26 root - INFO - DataFrame saved successfully to Artifacts/02_08_2025_12_23_12/data_transformation/transformed/Anime_UserRatings.csv.
|
59 |
+
[ 2025-02-08 12:24:07,400 ] 64 root - INFO - Data Transformation completed: DataTransformationArtifact(merged_file_path='Artifacts/02_08_2025_12_23_12/data_transformation/transformed/Anime_UserRatings.csv')
|
60 |
+
[ 2025-02-08 12:24:07,401 ] 76 root - INFO - Initiating Collaborative Model Training...
|
61 |
+
[ 2025-02-08 12:24:07,401 ] 41 root - INFO - Loading transformed data...
|
62 |
+
[ 2025-02-08 12:24:07,401 ] 43 root - INFO - Loading CSV data from file: Artifacts/02_08_2025_12_23_12/data_transformation/transformed/Anime_UserRatings.csv
|
63 |
+
[ 2025-02-08 12:24:08,571 ] 45 root - INFO - CSV file loaded successfully.
|
64 |
+
[ 2025-02-08 12:24:08,572 ] 26 root - INFO - Initializing CollaborativeAnimeRecommender
|
65 |
+
[ 2025-02-08 12:24:10,797 ] 45 root - INFO - Data preparation completed...
|
66 |
+
[ 2025-02-08 12:24:10,797 ] 46 root - INFO - Training and saving SVD model...
|
67 |
+
[ 2025-02-08 12:24:10,797 ] 54 root - INFO - Training SVD model
|
68 |
+
[ 2025-02-08 12:25:13,802 ] 59 root - INFO - SVD model training completed
|
69 |
+
[ 2025-02-08 12:25:13,803 ] 60 root - INFO - Entered the save_model method.
|
70 |
+
[ 2025-02-08 12:25:23,132 ] 64 root - INFO - Model saved successfully to Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/svd.pkl.
|
71 |
+
[ 2025-02-08 12:25:31,079 ] 109 root - INFO - Successfully uploaded svd.pkl to Hugging Face: krishnaveni76/anime-recommendation-models
|
72 |
+
[ 2025-02-08 12:25:31,079 ] 54 root - INFO - Loading pre-trained SVD model...
|
73 |
+
[ 2025-02-08 12:25:31,079 ] 80 root - INFO - Attempting to load object from Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/svd.pkl
|
74 |
+
[ 2025-02-08 12:25:31,079 ] 86 root - INFO - Object loaded successfully.
|
75 |
+
[ 2025-02-08 12:25:35,137 ] 134 root - INFO - Shape of recommended_anime: (10, 8)
|
76 |
+
[ 2025-02-08 12:25:35,142 ] 57 root - INFO - SVD recommendations: Anime Name Genres Image URL Rating
|
77 |
+
0 Clannad: After Story Drama, Fantasy, Romance, Slice of Life, Supern... https://cdn.myanimelist.net/images/anime/1299/... 8.93
|
78 |
+
1 Fate/Zero 2nd Season Action, Fantasy, Supernatural, Thriller https://cdn.myanimelist.net/images/anime/1522/... 8.55
|
79 |
+
2 Fullmetal Alchemist: Brotherhood Action, Adventure, Drama, Fantasy, Magic, Mili... https://cdn.myanimelist.net/images/anime/1208/... 9.10
|
80 |
+
3 Mushishi Adventure, Fantasy, Historical, Mystery, Seine... https://cdn.myanimelist.net/images/anime/2/738... 8.66
|
81 |
+
4 Tengen Toppa Gurren Lagann Action, Adventure, Comedy, Mecha, Sci-Fi https://cdn.myanimelist.net/images/anime/4/512... 8.63
|
82 |
+
5 Evangelion: 2.0 You Can (Not) Advance Action, Mecha, Sci-Fi https://cdn.myanimelist.net/images/anime/5/749... 8.31
|
83 |
+
6 Hunter x Hunter (2011) Action, Adventure, Shounen, Super Power https://cdn.myanimelist.net/images/anime/1337/... 9.04
|
84 |
+
7 Kara no Kyoukai Movie 5: Mujun Rasen Action, Drama, Mystery, Romance, Supernatural,... https://cdn.myanimelist.net/images/anime/1574/... 8.53
|
85 |
+
8 Rurouni Kenshin: Meiji Kenkaku Romantan - Tsui... Action, Drama, Historical, Martial Arts, Roman... https://cdn.myanimelist.net/images/anime/1391/... 8.71
|
86 |
+
9 Ginga Eiyuu Densetsu Drama, Military, Sci-Fi, Space https://cdn.myanimelist.net/images/anime/13/13... 9.02
|
87 |
+
[ 2025-02-08 12:25:35,142 ] 60 root - INFO - Training and saving KNN item-based model...
|
88 |
+
[ 2025-02-08 12:25:35,142 ] 68 root - INFO - Training KNN model
|
89 |
+
[ 2025-02-08 12:25:35,219 ] 60 root - INFO - Entered the save_model method.
|
90 |
+
[ 2025-02-08 12:25:35,245 ] 64 root - INFO - Model saved successfully to Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/itembasedknn.pkl.
|
91 |
+
[ 2025-02-08 12:25:36,067 ] 4009 huggingface_hub.hf_api - WARNING - No files have been modified since last commit. Skipping to prevent empty commit.
|
92 |
+
[ 2025-02-08 12:25:36,344 ] 109 root - INFO - Successfully uploaded itembasedknn.pkl to Hugging Face: krishnaveni76/anime-recommendation-models
|
93 |
+
[ 2025-02-08 12:25:36,344 ] 68 root - INFO - Loading pre-trained item-based KNN model...
|
94 |
+
[ 2025-02-08 12:25:36,344 ] 80 root - INFO - Attempting to load object from Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/itembasedknn.pkl
|
95 |
+
[ 2025-02-08 12:25:36,345 ] 86 root - INFO - Object loaded successfully.
|
96 |
+
[ 2025-02-08 12:25:36,373 ] 185 root - INFO - Top 10 recommendations: ['Bleach', 'Naruto', 'One Piece Film: Strong World', 'Fairy Tail', 'Soul Eater', 'Death Note', 'Code Geass: Hangyaku no Lelouch', 'Naruto: Shippuuden', 'Code Geass: Hangyaku no Lelouch R2', 'Fullmetal Alchemist: Brotherhood']
|
97 |
+
[ 2025-02-08 12:25:36,408 ] 187 root - INFO - Shape of filtered df: (10, 8)
|
98 |
+
[ 2025-02-08 12:25:36,412 ] 73 root - INFO - Item Based recommendations: Anime Name Image URL Genres Rating
|
99 |
+
0 Code Geass: Hangyaku no Lelouch https://cdn.myanimelist.net/images/anime/1032/... Action, Mecha, Military, School, Sci-Fi, Super... 8.70
|
100 |
+
1 Code Geass: Hangyaku no Lelouch R2 https://cdn.myanimelist.net/images/anime/1088/... Action, Drama, Mecha, Military, Sci-Fi, Super ... 8.91
|
101 |
+
2 Fullmetal Alchemist: Brotherhood https://cdn.myanimelist.net/images/anime/1208/... Action, Adventure, Drama, Fantasy, Magic, Mili... 9.10
|
102 |
+
3 Soul Eater https://cdn.myanimelist.net/images/anime/9/780... Action, Adventure, Comedy, Fantasy, Shounen, S... 7.84
|
103 |
+
4 Bleach https://cdn.myanimelist.net/images/anime/3/404... Action, Comedy, Shounen, Super Power, Supernat... 7.92
|
104 |
+
5 Death Note https://cdn.myanimelist.net/images/anime/9/945... Mystery, Police, Psychological, Supernatural, ... 8.62
|
105 |
+
6 Naruto https://cdn.myanimelist.net/images/anime/13/17... Action, Comedy, Martial Arts, Shounen, Super P... 7.99
|
106 |
+
7 Naruto: Shippuuden https://cdn.myanimelist.net/images/anime/1565/... Action, Comedy, Martial Arts, Shounen, Super P... 8.26
|
107 |
+
8 Fairy Tail https://cdn.myanimelist.net/images/anime/5/181... Action, Adventure, Comedy, Fantasy, Magic, Sho... 7.57
|
108 |
+
9 One Piece Film: Strong World https://cdn.myanimelist.net/images/anime/1192/... Action, Adventure, Comedy, Drama, Fantasy, Sho... 8.08
|
109 |
+
[ 2025-02-08 12:25:36,412 ] 76 root - INFO - Training and saving KNN user-based model...
|
110 |
+
[ 2025-02-08 12:25:36,412 ] 78 root - INFO - Training KNN model
|
111 |
+
[ 2025-02-08 12:25:36,535 ] 82 root - INFO - KNN model training completed
|
112 |
+
[ 2025-02-08 12:25:36,535 ] 60 root - INFO - Entered the save_model method.
|
113 |
+
[ 2025-02-08 12:25:36,558 ] 64 root - INFO - Model saved successfully to Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/userbasedknn.pkl.
|
114 |
+
[ 2025-02-08 12:25:37,249 ] 4009 huggingface_hub.hf_api - WARNING - No files have been modified since last commit. Skipping to prevent empty commit.
|
115 |
+
[ 2025-02-08 12:25:37,598 ] 109 root - INFO - Successfully uploaded userbasedknn.pkl to Hugging Face: krishnaveni76/anime-recommendation-models
|
116 |
+
[ 2025-02-08 12:25:37,598 ] 84 root - INFO - Loading pre-trained user-based KNN model...
|
117 |
+
[ 2025-02-08 12:25:37,598 ] 80 root - INFO - Attempting to load object from Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/userbasedknn.pkl
|
118 |
+
[ 2025-02-08 12:25:37,598 ] 86 root - INFO - Object loaded successfully.
|
119 |
+
[ 2025-02-08 12:25:37,649 ] 253 root - INFO - Shape of filtered df: (10, 8)
|
120 |
+
[ 2025-02-08 12:25:37,654 ] 89 root - INFO - User Based recommendations: Anime Name Image URL Genres Rating
|
121 |
0 Little Busters! Refrain https://cdn.myanimelist.net/images/anime/10/55... Comedy, Drama, Romance, School, Slice of Life,... 8.19
|
122 |
1 Chuunibyou demo Koi ga Shitai! Ren https://cdn.myanimelist.net/images/anime/7/566... Comedy, Drama, Romance, School, Slice of Life 7.55
|
123 |
2 Clannad: Mou Hitotsu no Sekai, Tomoyo-hen https://cdn.myanimelist.net/images/anime/12/19... Drama, Romance, School, Slice of Life 7.93
|
|
|
128 |
7 Motto To LOVE-Ru https://cdn.myanimelist.net/images/anime/4/598... Comedy, Ecchi, Harem, School, Sci-Fi, Shounen 7.28
|
129 |
8 Overlord https://cdn.myanimelist.net/images/anime/7/880... Action, Adventure, Fantasy, Game, Magic, Super... 7.91
|
130 |
9 No.6 https://cdn.myanimelist.net/images/anime/1474/... Action, Sci-Fi 7.56
|
131 |
+
[ 2025-02-08 12:25:38,100 ] 83 root - INFO - Collaborative Model Training completed: CollaborativeModelArtifact(svd_file_path='Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/svd.pkl', item_based_knn_file_path='Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/itembasedknn.pkl', user_based_knn_file_path='Artifacts/02_08_2025_12_23_12/trained_models/collaborative_recommenders/userbasedknn.pkl')
|
132 |
+
[ 2025-02-08 12:25:38,100 ] 95 root - INFO - Initiating Content-Based Model Training...
|
133 |
+
[ 2025-02-08 12:25:38,100 ] 37 root - INFO - Loading ingested data...
|
134 |
+
[ 2025-02-08 12:25:38,100 ] 43 root - INFO - Loading CSV data from file: Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/Animes.csv
|
135 |
+
[ 2025-02-08 12:25:38,208 ] 45 root - INFO - CSV file loaded successfully.
|
136 |
+
[ 2025-02-08 12:25:38,209 ] 39 root - INFO - Training ContentBasedRecommender model...
|
137 |
+
[ 2025-02-08 12:25:52,919 ] 35 root - INFO - Saving model to Artifacts/02_08_2025_12_23_12/trained_models/content_based_recommenders/cosine_similarity.pkl
|
138 |
+
[ 2025-02-08 12:26:00,731 ] 39 root - INFO - Content recommender Model saved successfully
|
139 |
+
[ 2025-02-08 12:28:18,967 ] 109 root - INFO - Successfully uploaded cosine_similarity.pkl to Hugging Face: krishnaveni76/anime-recommendation-models
|
140 |
+
[ 2025-02-08 12:28:18,969 ] 51 root - INFO - Model saved successfully.
|
141 |
+
[ 2025-02-08 12:28:18,969 ] 53 root - INFO - Loading saved model to get recommendations...
|
142 |
+
[ 2025-02-08 12:28:18,972 ] 46 root - INFO - Loading model from Artifacts/02_08_2025_12_23_12/trained_models/content_based_recommenders/cosine_similarity.pkl
|
143 |
+
[ 2025-02-08 12:28:28,483 ] 50 root - INFO - Model loaded successfully
|
144 |
+
[ 2025-02-08 12:28:28,626 ] 64 root - INFO - Recommendations generated successfully
|
145 |
+
[ 2025-02-08 12:28:28,804 ] 55 root - INFO - Cosine similarity recommendations: Anime name Image URL Genres Rating
|
146 |
0 One Piece: Episode of Merry - Mou Hitori no Na... https://cdn.myanimelist.net/images/anime/9/610... Action, Adventure, Comedy, Drama, Fantasy, Sho... 8.19
|
147 |
1 One Piece: Episode of Nami - Koukaishi no Nami... https://cdn.myanimelist.net/images/anime/5/414... Action, Adventure, Comedy, Drama, Fantasy, Sho... 8.12
|
148 |
2 One Piece: Episode of Sabo - 3 Kyoudai no Kizu... https://cdn.myanimelist.net/images/anime/1373/... Action, Adventure, Comedy, Drama, Fantasy, Sho... 7.71
|
|
|
153 |
7 Digimon Frontier https://cdn.myanimelist.net/images/anime/1048/... Action, Adventure, Comedy, Drama, Fantasy, Sho... 7.15
|
154 |
8 Digimon Tamers https://cdn.myanimelist.net/images/anime/7/736... Adventure, Comedy, Drama, Fantasy, Shounen 7.63
|
155 |
9 Digimon Savers https://cdn.myanimelist.net/images/anime/1415/... Adventure, Comedy, Drama, Fantasy, Shounen 6.95
|
156 |
+
[ 2025-02-08 12:28:29,200 ] 102 root - INFO - Content-Based Model Training completed: ContentBasedModelArtifact(cosine_similarity_model_file_path='Artifacts/02_08_2025_12_23_12/trained_models/content_based_recommenders/cosine_similarity.pkl')
|
157 |
+
[ 2025-02-08 12:28:29,201 ] 112 root - INFO - Initiating Popularity-Based Filtering...
|
158 |
+
[ 2025-02-08 12:28:29,205 ] 41 root - INFO - Loading transformed data...
|
159 |
+
[ 2025-02-08 12:28:29,206 ] 43 root - INFO - Loading CSV data from file: Artifacts/02_08_2025_12_23_12/data_ingestion/feature_store/Animes.csv
|
160 |
+
[ 2025-02-08 12:28:29,762 ] 45 root - INFO - CSV file loaded successfully.
|
161 |
+
[ 2025-02-08 12:28:29,765 ] 17 root - INFO - Initializing PopularityBasedFiltering class
|
162 |
+
[ 2025-02-08 12:28:29,820 ] 29 root - INFO - Fetching top 10 most popular animes
|
163 |
+
[ 2025-02-08 12:28:29,873 ] 48 root - INFO - Popular Anime recommendations: Anime name Image URL Genres Rating
|
164 |
0 Shingeki no Kyojin https://cdn.myanimelist.net/images/anime/10/47... Action, Drama, Fantasy, Shounen, Super Power 8.54
|
165 |
1 Death Note https://cdn.myanimelist.net/images/anime/9/945... Mystery, Police, Psychological, Supernatural, ... 8.62
|
166 |
2 Fullmetal Alchemist: Brotherhood https://cdn.myanimelist.net/images/anime/1208/... Action, Adventure, Drama, Fantasy, Magic, Mili... 9.10
|
|
|
171 |
7 Tokyo Ghoul https://cdn.myanimelist.net/images/anime/1498/... Action, Drama, Horror, Mystery, Psychological,... 7.79
|
172 |
8 Hunter x Hunter (2011) https://cdn.myanimelist.net/images/anime/1337/... Action, Adventure, Shounen, Super Power 9.04
|
173 |
9 Kimi no Na wa. https://cdn.myanimelist.net/images/anime/5/870... Drama, Romance, School, Supernatural 8.85
|
174 |
+
[ 2025-02-08 12:28:29,877 ] 115 root - INFO - Popularity-Based Filtering completed.
|
175 |
+
[ 2025-02-08 12:28:29,877 ] 140 root - INFO - Training Pipeline executed successfully.
|
notebooks/EDA.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/final_ARS.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
run_pipeline.py
CHANGED
@@ -13,6 +13,9 @@ if __name__ == "__main__":
|
|
13 |
raise AnimeRecommendorException(e, sys)
|
14 |
|
15 |
|
|
|
|
|
|
|
16 |
# import sys
|
17 |
# from anime_recommender.loggers.logging import logging
|
18 |
# from anime_recommender.exception.exception import AnimeRecommendorException
|
@@ -46,7 +49,7 @@ if __name__ == "__main__":
|
|
46 |
# collaborative_model_trainer_config = CollaborativeModelConfig(training_pipeline_config)
|
47 |
# collaborative_model_trainer = CollaborativeModelTrainer(collaborative_model_trainer_config= collaborative_model_trainer_config,data_transformation_artifact=data_transformation_artifact)
|
48 |
# logging.info("Initiating Collaborative Model training.")
|
49 |
-
# collaborative_model_trainer_artifact = collaborative_model_trainer.initiate_model_trainer(
|
50 |
# logging.info("Collaborative Model training completed.")
|
51 |
# print(collaborative_model_trainer_artifact)
|
52 |
|
|
|
13 |
raise AnimeRecommendorException(e, sys)
|
14 |
|
15 |
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
# import sys
|
20 |
# from anime_recommender.loggers.logging import logging
|
21 |
# from anime_recommender.exception.exception import AnimeRecommendorException
|
|
|
49 |
# collaborative_model_trainer_config = CollaborativeModelConfig(training_pipeline_config)
|
50 |
# collaborative_model_trainer = CollaborativeModelTrainer(collaborative_model_trainer_config= collaborative_model_trainer_config,data_transformation_artifact=data_transformation_artifact)
|
51 |
# logging.info("Initiating Collaborative Model training.")
|
52 |
+
# collaborative_model_trainer_artifact = collaborative_model_trainer.initiate_model_trainer()
|
53 |
# logging.info("Collaborative Model training completed.")
|
54 |
# print(collaborative_model_trainer_artifact)
|
55 |
|