Updated app
Browse files
app.py
CHANGED
@@ -1,242 +1,242 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import streamlit as st
|
3 |
-
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender
|
4 |
-
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender
|
5 |
-
from anime_recommender.model_trainer.top_anime_filtering import PopularityBasedFiltering
|
6 |
-
import joblib
|
7 |
-
from anime_recommender.constant import *
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
from datasets import load_dataset
|
10 |
-
|
11 |
-
def run_app():
|
12 |
-
"""
|
13 |
-
Initializes the Streamlit app, loads necessary datasets and models,
|
14 |
-
and provides a UI for anime recommendations based on three methods:
|
15 |
-
Content-Based, Collaborative, and Popularity-Based Filtering. ๐ฌ๐ฎ
|
16 |
-
"""
|
17 |
-
|
18 |
-
# Set page configuration
|
19 |
-
st.set_page_config(page_title="Anime Recommendation System", layout="wide")
|
20 |
-
|
21 |
-
# Load datasets if not present in session state
|
22 |
-
if "anime_data" not in st.session_state or "anime_user_ratings" not in st.session_state:
|
23 |
-
# Load datasets from Hugging Face (assuming no splits)
|
24 |
-
animedataset = load_dataset(ANIME_FILE_PATH, split=None)
|
25 |
-
mergeddataset = load_dataset(ANIMEUSERRATINGS_FILE_PATH, split=None)
|
26 |
-
|
27 |
-
# Convert the dataset to Pandas DataFrame
|
28 |
-
st.session_state.anime_data = pd.DataFrame(animedataset["train"])
|
29 |
-
st.session_state.anime_user_ratings = pd.DataFrame(mergeddataset["train"])
|
30 |
-
|
31 |
-
# Load models only once
|
32 |
-
if "models_loaded" not in st.session_state:
|
33 |
-
st.session_state.models_loaded = {}
|
34 |
-
# Load models
|
35 |
-
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
36 |
-
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
37 |
-
st.session_state.models_loaded["user_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME)
|
38 |
-
st.session_state.models_loaded["svd_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_SVD_TRAINED_MODEL_NAME)
|
39 |
-
|
40 |
-
# Load the models using joblib
|
41 |
-
with open(st.session_state.models_loaded["item_based_knn_model_path"], "rb") as f:
|
42 |
-
st.session_state.models_loaded["item_based_knn_model"] = joblib.load(f)
|
43 |
-
|
44 |
-
with open(st.session_state.models_loaded["user_based_knn_model_path"], "rb") as f:
|
45 |
-
st.session_state.models_loaded["user_based_knn_model"] = joblib.load(f)
|
46 |
-
|
47 |
-
with open(st.session_state.models_loaded["svd_model_path"], "rb") as f:
|
48 |
-
st.session_state.models_loaded["svd_model"] = joblib.load(f)
|
49 |
-
|
50 |
-
print("Models loaded successfully!")
|
51 |
-
|
52 |
-
# Access the data from session state
|
53 |
-
anime_data = st.session_state.anime_data
|
54 |
-
anime_user_ratings = st.session_state.anime_user_ratings
|
55 |
-
|
56 |
-
# # Display dataset info
|
57 |
-
# st.write("Anime Data:")
|
58 |
-
# st.dataframe(anime_data.head())
|
59 |
-
|
60 |
-
# st.write("Anime User Ratings Data:")
|
61 |
-
# st.dataframe(anime_user_ratings.head())
|
62 |
-
|
63 |
-
# Access the models from session state
|
64 |
-
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
65 |
-
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
66 |
-
user_based_knn_model = st.session_state.models_loaded["user_based_knn_model"]
|
67 |
-
svd_model = st.session_state.models_loaded["svd_model"]
|
68 |
-
print("Models loaded successfully!")
|
69 |
-
|
70 |
-
# Streamlit UI
|
71 |
-
app_selector = st.sidebar.radio(
|
72 |
-
"Select App", ("Content-Based Recommender", "Collaborative Recommender", "Top Anime Recommender")
|
73 |
-
)
|
74 |
-
|
75 |
-
# Content-Based Recommender App
|
76 |
-
if app_selector == "Content-Based Recommender":
|
77 |
-
st.title("Content-Based Recommendation System")
|
78 |
-
try:
|
79 |
-
|
80 |
-
anime_list = anime_data["name"].tolist()
|
81 |
-
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list)
|
82 |
-
|
83 |
-
# Set number of recommendations
|
84 |
-
max_recommendations = min(len(anime_data), 100)
|
85 |
-
n_recommendations = st.slider("Number of Recommendations", 1, max_recommendations, 10)
|
86 |
-
|
87 |
-
# Inject custom CSS for anime name font size
|
88 |
-
st.markdown(
|
89 |
-
"""
|
90 |
-
<style>
|
91 |
-
.anime-title {
|
92 |
-
font-size: 14px !important;
|
93 |
-
font-weight: bold;
|
94 |
-
text-align: center;
|
95 |
-
margin-top: 5px;
|
96 |
-
}
|
97 |
-
</style>
|
98 |
-
""",
|
99 |
-
unsafe_allow_html=True,
|
100 |
-
)
|
101 |
-
# Get Recommendations
|
102 |
-
if st.button("Get Recommendations"):
|
103 |
-
try:
|
104 |
-
recommender = ContentBasedRecommender(anime_data)
|
105 |
-
recommendations = recommender.get_rec_cosine(anime_name, n_recommendations=n_recommendations,model_path=cosine_similarity_model_path)
|
106 |
-
|
107 |
-
if isinstance(recommendations, str):
|
108 |
-
st.warning(recommendations)
|
109 |
-
elif recommendations.empty:
|
110 |
-
st.warning("No recommendations found.๐ง")
|
111 |
-
else:
|
112 |
-
st.write(f"Here are the Content-based Recommendations for {anime_name}:")
|
113 |
-
cols = st.columns(5)
|
114 |
-
for i, row in enumerate(recommendations.iterrows()):
|
115 |
-
col = cols[i % 5]
|
116 |
-
with col:
|
117 |
-
st.image(row[1]['Image URL'], use_container_width=True)
|
118 |
-
st.markdown(
|
119 |
-
f"<div class='anime-title'>{row[1]['Anime name']}</div>",
|
120 |
-
unsafe_allow_html=True,
|
121 |
-
)
|
122 |
-
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
123 |
-
except Exception as e:
|
124 |
-
st.error(f"Unexpected error: {str(e)}")
|
125 |
-
|
126 |
-
except Exception as e:
|
127 |
-
st.error(f"Unexpected error: {str(e)}")
|
128 |
-
|
129 |
-
elif app_selector == "Collaborative Recommender":
|
130 |
-
st.title("Collaborative Recommender System ๐งโ๐คโ๐ง๐ฌ")
|
131 |
-
|
132 |
-
try:
|
133 |
-
# Sidebar for choosing the collaborative filtering method
|
134 |
-
collaborative_method = st.sidebar.selectbox(
|
135 |
-
"Choose a collaborative filtering method:",
|
136 |
-
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
137 |
-
)
|
138 |
-
|
139 |
-
# User input
|
140 |
-
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
141 |
-
user_ids = anime_user_ratings['user_id'].unique()
|
142 |
-
user_id = st.selectbox("
|
143 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
144 |
-
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
145 |
-
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
146 |
-
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
147 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
148 |
-
|
149 |
-
# Get recommendations
|
150 |
-
if st.button("Get Recommendations"):
|
151 |
-
# Load the recommender
|
152 |
-
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
153 |
-
if collaborative_method == "SVD Collaborative Filtering":
|
154 |
-
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
155 |
-
elif collaborative_method == "User-Based Collaborative Filtering":
|
156 |
-
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
157 |
-
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
158 |
-
if anime_name:
|
159 |
-
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model)
|
160 |
-
else:
|
161 |
-
st.error("Invalid Anime Name. Please enter a valid anime title.")
|
162 |
-
|
163 |
-
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
164 |
-
if len(recommendations) < n_recommendations:
|
165 |
-
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
166 |
-
st.write(f"Here are the {collaborative_method} Recommendations:")
|
167 |
-
cols = st.columns(5)
|
168 |
-
for i, row in enumerate(recommendations.iterrows()):
|
169 |
-
col = cols[i % 5]
|
170 |
-
with col:
|
171 |
-
st.image(row[1]['Image URL'], use_container_width=True)
|
172 |
-
st.markdown(
|
173 |
-
f"<div class='anime-title'>{row[1]['Anime Name']}</div>",
|
174 |
-
unsafe_allow_html=True,
|
175 |
-
)
|
176 |
-
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
177 |
-
else:
|
178 |
-
st.error("No recommendations found.")
|
179 |
-
except Exception as e:
|
180 |
-
st.error(f"An error occurred: {e}")
|
181 |
-
|
182 |
-
elif app_selector == "Top Anime Recommender":
|
183 |
-
st.title("Top Anime Recommender System
|
184 |
-
|
185 |
-
try:
|
186 |
-
popularity_method = st.sidebar.selectbox(
|
187 |
-
"Choose a Popularity-Based Filtering method:",
|
188 |
-
[
|
189 |
-
"Popular Animes",
|
190 |
-
"Top Ranked Animes",
|
191 |
-
"Overall Top Rated Animes",
|
192 |
-
"Favorite Animes",
|
193 |
-
"Top Animes by Members",
|
194 |
-
"Popular Anime Among Members",
|
195 |
-
"Top Average Rated Animes",
|
196 |
-
]
|
197 |
-
)
|
198 |
-
|
199 |
-
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500 , value=10)
|
200 |
-
|
201 |
-
if st.button("Get Recommendations"):
|
202 |
-
recommender = PopularityBasedFiltering(anime_data)
|
203 |
-
|
204 |
-
# Get recommendations based on selected method
|
205 |
-
if popularity_method == "Popular Animes":
|
206 |
-
recommendations = recommender.popular_animes(n=n_recommendations)
|
207 |
-
elif popularity_method == "Top Ranked Animes":
|
208 |
-
recommendations = recommender.top_ranked_animes(n=n_recommendations)
|
209 |
-
elif popularity_method == "Overall Top Rated Animes":
|
210 |
-
recommendations = recommender.overall_top_rated_animes(n=n_recommendations)
|
211 |
-
elif popularity_method == "Favorite Animes":
|
212 |
-
recommendations = recommender.favorite_animes(n=n_recommendations)
|
213 |
-
elif popularity_method == "Top Animes by Members":
|
214 |
-
recommendations = recommender.top_animes_members(n=n_recommendations)
|
215 |
-
elif popularity_method == "Popular Anime Among Members":
|
216 |
-
recommendations = recommender.popular_anime_among_members(n=n_recommendations)
|
217 |
-
elif popularity_method == "Top Average Rated Animes":
|
218 |
-
recommendations = recommender.top_avg_rated(n=n_recommendations)
|
219 |
-
else:
|
220 |
-
st.error("Invalid selection. Please choose a valid method.")
|
221 |
-
recommendations = None
|
222 |
-
|
223 |
-
# Display recommendations
|
224 |
-
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
225 |
-
st.write(f" Here are the Recommendations:")
|
226 |
-
cols = st.columns(5)
|
227 |
-
for i, row in recommendations.iterrows():
|
228 |
-
col = cols[i % 5]
|
229 |
-
with col:
|
230 |
-
st.image(row['Image URL'], use_container_width=True)
|
231 |
-
st.markdown(
|
232 |
-
f"<div class='anime-title'>{row['Anime name']}</div>",
|
233 |
-
unsafe_allow_html=True,
|
234 |
-
)
|
235 |
-
st.caption(f"Genres: {row['Genres']} | Rating: {row['Rating']}")
|
236 |
-
else:
|
237 |
-
st.error("No recommendations found.")
|
238 |
-
except Exception as e:
|
239 |
-
st.error(f"An error occurred: {e}")
|
240 |
-
|
241 |
-
if __name__ == "__main__":
|
242 |
run_app()
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender
|
4 |
+
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender
|
5 |
+
from anime_recommender.model_trainer.top_anime_filtering import PopularityBasedFiltering
|
6 |
+
import joblib
|
7 |
+
from anime_recommender.constant import *
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from datasets import load_dataset
|
10 |
+
|
11 |
+
def run_app():
|
12 |
+
"""
|
13 |
+
Initializes the Streamlit app, loads necessary datasets and models,
|
14 |
+
and provides a UI for anime recommendations based on three methods:
|
15 |
+
Content-Based, Collaborative, and Popularity-Based Filtering. ๐ฌ๐ฎ
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Set page configuration
|
19 |
+
st.set_page_config(page_title="Anime Recommendation System", layout="wide")
|
20 |
+
|
21 |
+
# Load datasets if not present in session state
|
22 |
+
if "anime_data" not in st.session_state or "anime_user_ratings" not in st.session_state:
|
23 |
+
# Load datasets from Hugging Face (assuming no splits)
|
24 |
+
animedataset = load_dataset(ANIME_FILE_PATH, split=None)
|
25 |
+
mergeddataset = load_dataset(ANIMEUSERRATINGS_FILE_PATH, split=None)
|
26 |
+
|
27 |
+
# Convert the dataset to Pandas DataFrame
|
28 |
+
st.session_state.anime_data = pd.DataFrame(animedataset["train"])
|
29 |
+
st.session_state.anime_user_ratings = pd.DataFrame(mergeddataset["train"])
|
30 |
+
|
31 |
+
# Load models only once
|
32 |
+
if "models_loaded" not in st.session_state:
|
33 |
+
st.session_state.models_loaded = {}
|
34 |
+
# Load models
|
35 |
+
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
36 |
+
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME)
|
37 |
+
st.session_state.models_loaded["user_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME)
|
38 |
+
st.session_state.models_loaded["svd_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_SVD_TRAINED_MODEL_NAME)
|
39 |
+
|
40 |
+
# Load the models using joblib
|
41 |
+
with open(st.session_state.models_loaded["item_based_knn_model_path"], "rb") as f:
|
42 |
+
st.session_state.models_loaded["item_based_knn_model"] = joblib.load(f)
|
43 |
+
|
44 |
+
with open(st.session_state.models_loaded["user_based_knn_model_path"], "rb") as f:
|
45 |
+
st.session_state.models_loaded["user_based_knn_model"] = joblib.load(f)
|
46 |
+
|
47 |
+
with open(st.session_state.models_loaded["svd_model_path"], "rb") as f:
|
48 |
+
st.session_state.models_loaded["svd_model"] = joblib.load(f)
|
49 |
+
|
50 |
+
print("Models loaded successfully!")
|
51 |
+
|
52 |
+
# Access the data from session state
|
53 |
+
anime_data = st.session_state.anime_data
|
54 |
+
anime_user_ratings = st.session_state.anime_user_ratings
|
55 |
+
|
56 |
+
# # Display dataset info
|
57 |
+
# st.write("Anime Data:")
|
58 |
+
# st.dataframe(anime_data.head())
|
59 |
+
|
60 |
+
# st.write("Anime User Ratings Data:")
|
61 |
+
# st.dataframe(anime_user_ratings.head())
|
62 |
+
|
63 |
+
# Access the models from session state
|
64 |
+
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME)
|
65 |
+
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"]
|
66 |
+
user_based_knn_model = st.session_state.models_loaded["user_based_knn_model"]
|
67 |
+
svd_model = st.session_state.models_loaded["svd_model"]
|
68 |
+
print("Models loaded successfully!")
|
69 |
+
|
70 |
+
# Streamlit UI
|
71 |
+
app_selector = st.sidebar.radio(
|
72 |
+
"Select App", ("Content-Based Recommender", "Collaborative Recommender", "Top Anime Recommender")
|
73 |
+
)
|
74 |
+
|
75 |
+
# Content-Based Recommender App
|
76 |
+
if app_selector == "Content-Based Recommender":
|
77 |
+
st.title("Content-Based Recommendation System")
|
78 |
+
try:
|
79 |
+
|
80 |
+
anime_list = anime_data["name"].tolist()
|
81 |
+
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list)
|
82 |
+
|
83 |
+
# Set number of recommendations
|
84 |
+
max_recommendations = min(len(anime_data), 100)
|
85 |
+
n_recommendations = st.slider("Number of Recommendations", 1, max_recommendations, 10)
|
86 |
+
|
87 |
+
# Inject custom CSS for anime name font size
|
88 |
+
st.markdown(
|
89 |
+
"""
|
90 |
+
<style>
|
91 |
+
.anime-title {
|
92 |
+
font-size: 14px !important;
|
93 |
+
font-weight: bold;
|
94 |
+
text-align: center;
|
95 |
+
margin-top: 5px;
|
96 |
+
}
|
97 |
+
</style>
|
98 |
+
""",
|
99 |
+
unsafe_allow_html=True,
|
100 |
+
)
|
101 |
+
# Get Recommendations
|
102 |
+
if st.button("Get Recommendations"):
|
103 |
+
try:
|
104 |
+
recommender = ContentBasedRecommender(anime_data)
|
105 |
+
recommendations = recommender.get_rec_cosine(anime_name, n_recommendations=n_recommendations,model_path=cosine_similarity_model_path)
|
106 |
+
|
107 |
+
if isinstance(recommendations, str):
|
108 |
+
st.warning(recommendations)
|
109 |
+
elif recommendations.empty:
|
110 |
+
st.warning("No recommendations found.๐ง")
|
111 |
+
else:
|
112 |
+
st.write(f"Here are the Content-based Recommendations for {anime_name}:")
|
113 |
+
cols = st.columns(5)
|
114 |
+
for i, row in enumerate(recommendations.iterrows()):
|
115 |
+
col = cols[i % 5]
|
116 |
+
with col:
|
117 |
+
st.image(row[1]['Image URL'], use_container_width=True)
|
118 |
+
st.markdown(
|
119 |
+
f"<div class='anime-title'>{row[1]['Anime name']}</div>",
|
120 |
+
unsafe_allow_html=True,
|
121 |
+
)
|
122 |
+
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Unexpected error: {str(e)}")
|
125 |
+
|
126 |
+
except Exception as e:
|
127 |
+
st.error(f"Unexpected error: {str(e)}")
|
128 |
+
|
129 |
+
elif app_selector == "Collaborative Recommender":
|
130 |
+
st.title("Collaborative Recommender System ๐งโ๐คโ๐ง๐ฌ")
|
131 |
+
|
132 |
+
try:
|
133 |
+
# Sidebar for choosing the collaborative filtering method
|
134 |
+
collaborative_method = st.sidebar.selectbox(
|
135 |
+
"Choose a collaborative filtering method:",
|
136 |
+
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"]
|
137 |
+
)
|
138 |
+
|
139 |
+
# User input
|
140 |
+
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering":
|
141 |
+
user_ids = anime_user_ratings['user_id'].unique()
|
142 |
+
user_id = st.selectbox("Select your MyAnimeList user ID to get anime recommendations based on similar users", user_ids)
|
143 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
144 |
+
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
145 |
+
anime_list = anime_user_ratings["name"].dropna().unique().tolist()
|
146 |
+
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list)
|
147 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10)
|
148 |
+
|
149 |
+
# Get recommendations
|
150 |
+
if st.button("Get Recommendations"):
|
151 |
+
# Load the recommender
|
152 |
+
recommender = CollaborativeAnimeRecommender(anime_user_ratings)
|
153 |
+
if collaborative_method == "SVD Collaborative Filtering":
|
154 |
+
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model)
|
155 |
+
elif collaborative_method == "User-Based Collaborative Filtering":
|
156 |
+
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model)
|
157 |
+
elif collaborative_method == "Anime-Based KNN Collaborative Filtering":
|
158 |
+
if anime_name:
|
159 |
+
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model)
|
160 |
+
else:
|
161 |
+
st.error("Invalid Anime Name. Please enter a valid anime title.")
|
162 |
+
|
163 |
+
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
164 |
+
if len(recommendations) < n_recommendations:
|
165 |
+
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.")
|
166 |
+
st.write(f"Here are the {collaborative_method} Recommendations:")
|
167 |
+
cols = st.columns(5)
|
168 |
+
for i, row in enumerate(recommendations.iterrows()):
|
169 |
+
col = cols[i % 5]
|
170 |
+
with col:
|
171 |
+
st.image(row[1]['Image URL'], use_container_width=True)
|
172 |
+
st.markdown(
|
173 |
+
f"<div class='anime-title'>{row[1]['Anime Name']}</div>",
|
174 |
+
unsafe_allow_html=True,
|
175 |
+
)
|
176 |
+
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}")
|
177 |
+
else:
|
178 |
+
st.error("No recommendations found.")
|
179 |
+
except Exception as e:
|
180 |
+
st.error(f"An error occurred: {e}")
|
181 |
+
|
182 |
+
elif app_selector == "Top Anime Recommender":
|
183 |
+
st.title("Top Anime Recommender System ๐ฅ")
|
184 |
+
|
185 |
+
try:
|
186 |
+
popularity_method = st.sidebar.selectbox(
|
187 |
+
"Choose a Popularity-Based Filtering method:",
|
188 |
+
[
|
189 |
+
"Popular Animes",
|
190 |
+
"Top Ranked Animes",
|
191 |
+
"Overall Top Rated Animes",
|
192 |
+
"Favorite Animes",
|
193 |
+
"Top Animes by Members",
|
194 |
+
"Popular Anime Among Members",
|
195 |
+
"Top Average Rated Animes",
|
196 |
+
]
|
197 |
+
)
|
198 |
+
|
199 |
+
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500 , value=10)
|
200 |
+
|
201 |
+
if st.button("Get Recommendations"):
|
202 |
+
recommender = PopularityBasedFiltering(anime_data)
|
203 |
+
|
204 |
+
# Get recommendations based on selected method
|
205 |
+
if popularity_method == "Popular Animes":
|
206 |
+
recommendations = recommender.popular_animes(n=n_recommendations)
|
207 |
+
elif popularity_method == "Top Ranked Animes":
|
208 |
+
recommendations = recommender.top_ranked_animes(n=n_recommendations)
|
209 |
+
elif popularity_method == "Overall Top Rated Animes":
|
210 |
+
recommendations = recommender.overall_top_rated_animes(n=n_recommendations)
|
211 |
+
elif popularity_method == "Favorite Animes":
|
212 |
+
recommendations = recommender.favorite_animes(n=n_recommendations)
|
213 |
+
elif popularity_method == "Top Animes by Members":
|
214 |
+
recommendations = recommender.top_animes_members(n=n_recommendations)
|
215 |
+
elif popularity_method == "Popular Anime Among Members":
|
216 |
+
recommendations = recommender.popular_anime_among_members(n=n_recommendations)
|
217 |
+
elif popularity_method == "Top Average Rated Animes":
|
218 |
+
recommendations = recommender.top_avg_rated(n=n_recommendations)
|
219 |
+
else:
|
220 |
+
st.error("Invalid selection. Please choose a valid method.")
|
221 |
+
recommendations = None
|
222 |
+
|
223 |
+
# Display recommendations
|
224 |
+
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty:
|
225 |
+
st.write(f" Here are the Recommendations:")
|
226 |
+
cols = st.columns(5)
|
227 |
+
for i, row in recommendations.iterrows():
|
228 |
+
col = cols[i % 5]
|
229 |
+
with col:
|
230 |
+
st.image(row['Image URL'], use_container_width=True)
|
231 |
+
st.markdown(
|
232 |
+
f"<div class='anime-title'>{row['Anime name']}</div>",
|
233 |
+
unsafe_allow_html=True,
|
234 |
+
)
|
235 |
+
st.caption(f"Genres: {row['Genres']} | Rating: {row['Rating']}")
|
236 |
+
else:
|
237 |
+
st.error("No recommendations found.")
|
238 |
+
except Exception as e:
|
239 |
+
st.error(f"An error occurred: {e}")
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
run_app()
|