|
import pandas as pd |
|
import streamlit as st |
|
from anime_recommender.model_trainer.content_based_modelling import ContentBasedRecommender |
|
from anime_recommender.model_trainer.collaborative_modelling import CollaborativeAnimeRecommender |
|
from anime_recommender.model_trainer.top_anime_filtering import PopularityBasedFiltering |
|
import joblib |
|
from anime_recommender.constant import * |
|
from huggingface_hub import hf_hub_download |
|
from datasets import load_dataset |
|
|
|
def run_app(): |
|
""" |
|
Initializes the Streamlit app, loads necessary datasets and models, |
|
and provides a UI for anime recommendations based on three methods: |
|
Content-Based, Collaborative, and Popularity-Based Filtering. ๐ฌ๐ฎ |
|
""" |
|
|
|
|
|
st.set_page_config(page_title="Anime Recommendation System", layout="wide") |
|
|
|
|
|
if "anime_data" not in st.session_state or "anime_user_ratings" not in st.session_state: |
|
|
|
animedataset = load_dataset(ANIME_FILE_PATH, split=None) |
|
mergeddataset = load_dataset(ANIMEUSERRATINGS_FILE_PATH, split=None) |
|
|
|
|
|
st.session_state.anime_data = pd.DataFrame(animedataset["train"]) |
|
st.session_state.anime_user_ratings = pd.DataFrame(mergeddataset["train"]) |
|
|
|
|
|
if "models_loaded" not in st.session_state: |
|
st.session_state.models_loaded = {} |
|
|
|
st.session_state.models_loaded["cosine_similarity_model"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME) |
|
st.session_state.models_loaded["item_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_ITEM_KNN_TRAINED_MODEL_NAME) |
|
st.session_state.models_loaded["user_based_knn_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_USER_KNN_TRAINED_MODEL_NAME) |
|
st.session_state.models_loaded["svd_model_path"] = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_SVD_TRAINED_MODEL_NAME) |
|
|
|
|
|
with open(st.session_state.models_loaded["item_based_knn_model_path"], "rb") as f: |
|
st.session_state.models_loaded["item_based_knn_model"] = joblib.load(f) |
|
|
|
with open(st.session_state.models_loaded["user_based_knn_model_path"], "rb") as f: |
|
st.session_state.models_loaded["user_based_knn_model"] = joblib.load(f) |
|
|
|
with open(st.session_state.models_loaded["svd_model_path"], "rb") as f: |
|
st.session_state.models_loaded["svd_model"] = joblib.load(f) |
|
|
|
print("Models loaded successfully!") |
|
|
|
|
|
anime_data = st.session_state.anime_data |
|
anime_user_ratings = st.session_state.anime_user_ratings |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cosine_similarity_model_path = hf_hub_download(MODELS_FILEPATH, MODEL_TRAINER_COSINESIMILARITY_MODEL_NAME) |
|
item_based_knn_model = st.session_state.models_loaded["item_based_knn_model"] |
|
user_based_knn_model = st.session_state.models_loaded["user_based_knn_model"] |
|
svd_model = st.session_state.models_loaded["svd_model"] |
|
print("Models loaded successfully!") |
|
|
|
|
|
app_selector = st.sidebar.radio( |
|
"Select App", ("Content-Based Recommender", "Collaborative Recommender", "Top Anime Recommender") |
|
) |
|
|
|
|
|
if app_selector == "Content-Based Recommender": |
|
st.title("Content-Based Recommendation System") |
|
try: |
|
|
|
anime_list = anime_data["name"].tolist() |
|
anime_name = st.selectbox("Pick an anime..unlock similar anime recommendations..", anime_list) |
|
|
|
|
|
max_recommendations = min(len(anime_data), 100) |
|
n_recommendations = st.slider("Number of Recommendations", 1, max_recommendations, 10) |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
.anime-title { |
|
font-size: 14px !important; |
|
font-weight: bold; |
|
text-align: center; |
|
margin-top: 5px; |
|
} |
|
</style> |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
if st.button("Get Recommendations"): |
|
try: |
|
recommender = ContentBasedRecommender(anime_data) |
|
recommendations = recommender.get_rec_cosine(anime_name, n_recommendations=n_recommendations,model_path=cosine_similarity_model_path) |
|
|
|
if isinstance(recommendations, str): |
|
st.warning(recommendations) |
|
elif recommendations.empty: |
|
st.warning("No recommendations found.๐ง") |
|
else: |
|
st.write(f"Here are the Content-based Recommendations for {anime_name}:") |
|
cols = st.columns(5) |
|
for i, row in enumerate(recommendations.iterrows()): |
|
col = cols[i % 5] |
|
with col: |
|
st.image(row[1]['Image URL'], use_container_width=True) |
|
st.markdown( |
|
f"<div class='anime-title'>{row[1]['Anime name']}</div>", |
|
unsafe_allow_html=True, |
|
) |
|
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}") |
|
except Exception as e: |
|
st.error(f"Unexpected error: {str(e)}") |
|
|
|
except Exception as e: |
|
st.error(f"Unexpected error: {str(e)}") |
|
|
|
elif app_selector == "Collaborative Recommender": |
|
st.title("Collaborative Recommender System ๐งโ๐คโ๐ง๐ฌ") |
|
|
|
try: |
|
|
|
collaborative_method = st.sidebar.selectbox( |
|
"Choose a collaborative filtering method:", |
|
["SVD Collaborative Filtering", "User-Based Collaborative Filtering", "Anime-Based KNN Collaborative Filtering"] |
|
) |
|
|
|
|
|
if collaborative_method == "SVD Collaborative Filtering" or collaborative_method == "User-Based Collaborative Filtering": |
|
user_ids = anime_user_ratings['user_id'].unique() |
|
user_id = st.selectbox("Select your MyAnimeList user ID to get anime recommendations based on similar users", user_ids) |
|
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10) |
|
elif collaborative_method == "Anime-Based KNN Collaborative Filtering": |
|
anime_list = anime_user_ratings["name"].dropna().unique().tolist() |
|
anime_name = st.selectbox("Pick an anime, and we'll suggest more titles you'll love", anime_list) |
|
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=50, value=10) |
|
|
|
|
|
if st.button("Get Recommendations"): |
|
|
|
recommender = CollaborativeAnimeRecommender(anime_user_ratings) |
|
if collaborative_method == "SVD Collaborative Filtering": |
|
recommendations = recommender.get_svd_recommendations(user_id, n=n_recommendations, svd_model=svd_model) |
|
elif collaborative_method == "User-Based Collaborative Filtering": |
|
recommendations = recommender.get_user_based_recommendations(user_id, n_recommendations=n_recommendations, knn_user_model=user_based_knn_model) |
|
elif collaborative_method == "Anime-Based KNN Collaborative Filtering": |
|
if anime_name: |
|
recommendations = recommender.get_item_based_recommendations(anime_name, n_recommendations=n_recommendations, knn_item_model=item_based_knn_model) |
|
else: |
|
st.error("Invalid Anime Name. Please enter a valid anime title.") |
|
|
|
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty: |
|
if len(recommendations) < n_recommendations: |
|
st.warning(f"Oops...Only {len(recommendations)} recommendations available, fewer than the requested {n_recommendations}.") |
|
st.write(f"Here are the {collaborative_method} Recommendations:") |
|
cols = st.columns(5) |
|
for i, row in enumerate(recommendations.iterrows()): |
|
col = cols[i % 5] |
|
with col: |
|
st.image(row[1]['Image URL'], use_container_width=True) |
|
st.markdown( |
|
f"<div class='anime-title'>{row[1]['Anime Name']}</div>", |
|
unsafe_allow_html=True, |
|
) |
|
st.caption(f"Genres: {row[1]['Genres']} | Rating: {row[1]['Rating']}") |
|
else: |
|
st.error("No recommendations found.") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
elif app_selector == "Top Anime Recommender": |
|
st.title("Top Anime Recommender System ๐ฅ") |
|
|
|
try: |
|
popularity_method = st.sidebar.selectbox( |
|
"Choose a Popularity-Based Filtering method:", |
|
[ |
|
"Popular Animes", |
|
"Top Ranked Animes", |
|
"Overall Top Rated Animes", |
|
"Favorite Animes", |
|
"Top Animes by Members", |
|
"Popular Anime Among Members", |
|
"Top Average Rated Animes", |
|
] |
|
) |
|
|
|
n_recommendations = st.slider("Number of Recommendations:", min_value=1, max_value=500 , value=10) |
|
|
|
if st.button("Get Recommendations"): |
|
recommender = PopularityBasedFiltering(anime_data) |
|
|
|
|
|
if popularity_method == "Popular Animes": |
|
recommendations = recommender.popular_animes(n=n_recommendations) |
|
elif popularity_method == "Top Ranked Animes": |
|
recommendations = recommender.top_ranked_animes(n=n_recommendations) |
|
elif popularity_method == "Overall Top Rated Animes": |
|
recommendations = recommender.overall_top_rated_animes(n=n_recommendations) |
|
elif popularity_method == "Favorite Animes": |
|
recommendations = recommender.favorite_animes(n=n_recommendations) |
|
elif popularity_method == "Top Animes by Members": |
|
recommendations = recommender.top_animes_members(n=n_recommendations) |
|
elif popularity_method == "Popular Anime Among Members": |
|
recommendations = recommender.popular_anime_among_members(n=n_recommendations) |
|
elif popularity_method == "Top Average Rated Animes": |
|
recommendations = recommender.top_avg_rated(n=n_recommendations) |
|
else: |
|
st.error("Invalid selection. Please choose a valid method.") |
|
recommendations = None |
|
|
|
|
|
if isinstance(recommendations, pd.DataFrame) and not recommendations.empty: |
|
st.write(f" Here are the Recommendations:") |
|
cols = st.columns(5) |
|
for i, row in recommendations.iterrows(): |
|
col = cols[i % 5] |
|
with col: |
|
st.image(row['Image URL'], use_container_width=True) |
|
st.markdown( |
|
f"<div class='anime-title'>{row['Anime name']}</div>", |
|
unsafe_allow_html=True, |
|
) |
|
st.caption(f"Genres: {row['Genres']} | Rating: {row['Rating']}") |
|
else: |
|
st.error("No recommendations found.") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
|
|
if __name__ == "__main__": |
|
run_app() |