kreemyyyy's picture
Update app.py
dce160d verified
raw
history blame
6.7 kB
import gradio as gr
import pandas as pd
import tempfile
import os
from openpyxl import load_workbook
from openpyxl.styles import Alignment
def adjust_excel_formatting(file_path):
wb = load_workbook(file_path)
ws = wb.active
for col in ws.columns:
max_length = 0
col_letter = col[0].column_letter
for cell in col:
if cell.value:
max_length = max(max_length, len(str(cell.value)))
cell.alignment = Alignment(wrap_text=True)
ws.column_dimensions[col_letter].width = max_length + 2
wb.save(file_path)
def process_file_a_to_b(input_file):
try:
# Read the Excel file, skipping the first row (OVERNIGHT/MORNING header)
input_df = pd.read_excel(input_file.name, header=1)
# Get the date columns (all columns except the first one which contains model names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Model names)
var_name='DATE',
value_name='CHATTER'
)
# Clean up the data
df_long = df_long[df_long['CHATTER'].notna()] # Remove empty cells
df_long = df_long[df_long['CHATTER'] != ''] # Remove empty strings
df_long = df_long[df_long['CHATTER'] != 'OFF'] # Remove 'OFF' entries
# Group by chatter and date, collect all models
grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get chatters as rows and dates as columns
pivoted = grouped.pivot(
index='CHATTER',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Define the expected order of chatters
expected_chatters = [
'VELJKO2', 'VELJKO3', 'MARKO', 'GODDARD', 'ALEKSANDER', 'FEELIP',
'DENIS', 'TOME', 'MILA', 'VELJKO', 'DAMJAN', 'DULE', 'CONRAD',
'ALEXANDER', 'VEJKO3'
]
# Reindex with expected order, keeping any additional chatters at the end
final_df = pivoted.reindex(expected_chatters + [x for x in pivoted.index if x not in expected_chatters])
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index and rename the index column to 'CHATTER'
final_df = final_df.reset_index()
final_df = final_df.rename(columns={'index': 'CHATTER'})
return final_df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def process_file_b_to_a(input_file):
try:
# Read the Excel file
input_df = pd.read_excel(input_file.name, header=0)
# Get the date columns (all columns except the first one which contains chatter names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Chatter names)
var_name='DATE',
value_name='MODEL'
)
# Clean up the data
df_long = df_long[df_long['MODEL'].notna()] # Remove empty cells
df_long = df_long[df_long['MODEL'] != ''] # Remove empty strings
df_long = df_long[df_long['MODEL'] != 'OFF'] # Remove 'OFF' entries
# Split comma-separated models into separate rows
df_long['MODEL'] = df_long['MODEL'].str.split(', ')
df_long = df_long.explode('MODEL')
# Group by model and date, collect all chatters
grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get models as rows and dates as columns
pivoted = grouped.pivot(
index='MODEL',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Sort models alphabetically
final_df = pivoted.sort_index()
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index to make MODEL a column
final_df = final_df.reset_index()
return final_df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def convert_schedule(file, direction):
if direction == "Format A β†’ Format B":
df = process_file_a_to_b(file)
else:
df = process_file_b_to_a(file)
# Save to temp file for download
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
df.to_excel(tmp.name, index=False)
adjust_excel_formatting(tmp.name)
tmp.seek(0)
data = tmp.read()
return df, (tmp.name,)
def download_file(file_tuple):
return file_tuple[0]
demo = gr.Blocks()
with demo:
gr.Markdown("# πŸ“… Schedule Converter")
gr.Markdown("Upload your schedule Excel file, select conversion direction, and download the result.")
with gr.Row():
file = gr.File(label="Upload Schedule File", type="file")
direction = gr.Dropdown([
"Format A β†’ Format B",
"Format B β†’ Format A"
], value="Format A β†’ Format B", label="Conversion Direction")
with gr.Row():
process_btn = gr.Button("Process File", variant="primary")
reset_btn = gr.Button("Upload New File")
output_table = gr.Dataframe(label="Preview", wrap=True)
download_button = gr.Button("Download Processed File", visible=False)
temp_file_path = gr.State(value=None)
def reset_components():
return [None, pd.DataFrame(), None, gr.update(visible=False)]
def process_and_show(file, direction):
df, out_path = convert_schedule(file, direction)
if out_path:
return df, out_path, gr.update(visible=True)
return df, None, gr.update(visible=False)
process_btn.click(
process_and_show,
inputs=[file, direction],
outputs=[output_table, temp_file_path, download_button]
)
reset_btn.click(
reset_components,
outputs=[file, output_table, temp_file_path, download_button]
)
download_button.click(
download_file,
inputs=temp_file_path,
outputs=gr.File(label="Processed Schedule")
)
demo.launch()