Spaces:
Runtime error
Runtime error
File size: 6,697 Bytes
dce160d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import pandas as pd
import tempfile
import os
from openpyxl import load_workbook
from openpyxl.styles import Alignment
def adjust_excel_formatting(file_path):
wb = load_workbook(file_path)
ws = wb.active
for col in ws.columns:
max_length = 0
col_letter = col[0].column_letter
for cell in col:
if cell.value:
max_length = max(max_length, len(str(cell.value)))
cell.alignment = Alignment(wrap_text=True)
ws.column_dimensions[col_letter].width = max_length + 2
wb.save(file_path)
def process_file_a_to_b(input_file):
try:
# Read the Excel file, skipping the first row (OVERNIGHT/MORNING header)
input_df = pd.read_excel(input_file.name, header=1)
# Get the date columns (all columns except the first one which contains model names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Model names)
var_name='DATE',
value_name='CHATTER'
)
# Clean up the data
df_long = df_long[df_long['CHATTER'].notna()] # Remove empty cells
df_long = df_long[df_long['CHATTER'] != ''] # Remove empty strings
df_long = df_long[df_long['CHATTER'] != 'OFF'] # Remove 'OFF' entries
# Group by chatter and date, collect all models
grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get chatters as rows and dates as columns
pivoted = grouped.pivot(
index='CHATTER',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Define the expected order of chatters
expected_chatters = [
'VELJKO2', 'VELJKO3', 'MARKO', 'GODDARD', 'ALEKSANDER', 'FEELIP',
'DENIS', 'TOME', 'MILA', 'VELJKO', 'DAMJAN', 'DULE', 'CONRAD',
'ALEXANDER', 'VEJKO3'
]
# Reindex with expected order, keeping any additional chatters at the end
final_df = pivoted.reindex(expected_chatters + [x for x in pivoted.index if x not in expected_chatters])
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index and rename the index column to 'CHATTER'
final_df = final_df.reset_index()
final_df = final_df.rename(columns={'index': 'CHATTER'})
return final_df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def process_file_b_to_a(input_file):
try:
# Read the Excel file
input_df = pd.read_excel(input_file.name, header=0)
# Get the date columns (all columns except the first one which contains chatter names)
date_columns = input_df.columns[1:].tolist()
# Melt the dataframe to long format
df_long = input_df.melt(
id_vars=[input_df.columns[0]], # First column (Chatter names)
var_name='DATE',
value_name='MODEL'
)
# Clean up the data
df_long = df_long[df_long['MODEL'].notna()] # Remove empty cells
df_long = df_long[df_long['MODEL'] != ''] # Remove empty strings
df_long = df_long[df_long['MODEL'] != 'OFF'] # Remove 'OFF' entries
# Split comma-separated models into separate rows
df_long['MODEL'] = df_long['MODEL'].str.split(', ')
df_long = df_long.explode('MODEL')
# Group by model and date, collect all chatters
grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
lambda x: ', '.join(sorted(x))
).reset_index()
# Pivot to get models as rows and dates as columns
pivoted = grouped.pivot(
index='MODEL',
columns='DATE',
values=input_df.columns[0]
)
# Reorder columns to match original date order
pivoted = pivoted[date_columns]
# Sort models alphabetically
final_df = pivoted.sort_index()
# Fill empty cells with 'OFF'
final_df = final_df.fillna('OFF')
# Reset index to make MODEL a column
final_df = final_df.reset_index()
return final_df
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def convert_schedule(file, direction):
if direction == "Format A β Format B":
df = process_file_a_to_b(file)
else:
df = process_file_b_to_a(file)
# Save to temp file for download
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
df.to_excel(tmp.name, index=False)
adjust_excel_formatting(tmp.name)
tmp.seek(0)
data = tmp.read()
return df, (tmp.name,)
def download_file(file_tuple):
return file_tuple[0]
demo = gr.Blocks()
with demo:
gr.Markdown("# π
Schedule Converter")
gr.Markdown("Upload your schedule Excel file, select conversion direction, and download the result.")
with gr.Row():
file = gr.File(label="Upload Schedule File", type="file")
direction = gr.Dropdown([
"Format A β Format B",
"Format B β Format A"
], value="Format A β Format B", label="Conversion Direction")
with gr.Row():
process_btn = gr.Button("Process File", variant="primary")
reset_btn = gr.Button("Upload New File")
output_table = gr.Dataframe(label="Preview", wrap=True)
download_button = gr.Button("Download Processed File", visible=False)
temp_file_path = gr.State(value=None)
def reset_components():
return [None, pd.DataFrame(), None, gr.update(visible=False)]
def process_and_show(file, direction):
df, out_path = convert_schedule(file, direction)
if out_path:
return df, out_path, gr.update(visible=True)
return df, None, gr.update(visible=False)
process_btn.click(
process_and_show,
inputs=[file, direction],
outputs=[output_table, temp_file_path, download_button]
)
reset_btn.click(
reset_components,
outputs=[file, output_table, temp_file_path, download_button]
)
download_button.click(
download_file,
inputs=temp_file_path,
outputs=gr.File(label="Processed Schedule")
)
demo.launch() |