File size: 6,697 Bytes
dce160d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
import pandas as pd
import tempfile
import os
from openpyxl import load_workbook
from openpyxl.styles import Alignment

def adjust_excel_formatting(file_path):
    wb = load_workbook(file_path)
    ws = wb.active
    for col in ws.columns:
        max_length = 0
        col_letter = col[0].column_letter
        for cell in col:
            if cell.value:
                max_length = max(max_length, len(str(cell.value)))
            cell.alignment = Alignment(wrap_text=True)
        ws.column_dimensions[col_letter].width = max_length + 2
    wb.save(file_path)

def process_file_a_to_b(input_file):
    try:
        # Read the Excel file, skipping the first row (OVERNIGHT/MORNING header)
        input_df = pd.read_excel(input_file.name, header=1)
        
        # Get the date columns (all columns except the first one which contains model names)
        date_columns = input_df.columns[1:].tolist()
        
        # Melt the dataframe to long format
        df_long = input_df.melt(
            id_vars=[input_df.columns[0]],  # First column (Model names)
            var_name='DATE',
            value_name='CHATTER'
        )
        
        # Clean up the data
        df_long = df_long[df_long['CHATTER'].notna()]  # Remove empty cells
        df_long = df_long[df_long['CHATTER'] != '']    # Remove empty strings
        df_long = df_long[df_long['CHATTER'] != 'OFF'] # Remove 'OFF' entries
        
        # Group by chatter and date, collect all models
        grouped = df_long.groupby(['CHATTER', 'DATE'])[input_df.columns[0]].apply(
            lambda x: ', '.join(sorted(x))
        ).reset_index()
        
        # Pivot to get chatters as rows and dates as columns
        pivoted = grouped.pivot(
            index='CHATTER',
            columns='DATE',
            values=input_df.columns[0]
        )
        
        # Reorder columns to match original date order
        pivoted = pivoted[date_columns]
        
        # Define the expected order of chatters
        expected_chatters = [
            'VELJKO2', 'VELJKO3', 'MARKO', 'GODDARD', 'ALEKSANDER', 'FEELIP', 
            'DENIS', 'TOME', 'MILA', 'VELJKO', 'DAMJAN', 'DULE', 'CONRAD', 
            'ALEXANDER', 'VEJKO3'
        ]
        
        # Reindex with expected order, keeping any additional chatters at the end
        final_df = pivoted.reindex(expected_chatters + [x for x in pivoted.index if x not in expected_chatters])
        
        # Fill empty cells with 'OFF'
        final_df = final_df.fillna('OFF')
        
        # Reset index and rename the index column to 'CHATTER'
        final_df = final_df.reset_index()
        final_df = final_df.rename(columns={'index': 'CHATTER'})
        
        return final_df
    except Exception as e:
        return pd.DataFrame({"Error": [str(e)]})

def process_file_b_to_a(input_file):
    try:
        # Read the Excel file
        input_df = pd.read_excel(input_file.name, header=0)
        
        # Get the date columns (all columns except the first one which contains chatter names)
        date_columns = input_df.columns[1:].tolist()
        
        # Melt the dataframe to long format
        df_long = input_df.melt(
            id_vars=[input_df.columns[0]],  # First column (Chatter names)
            var_name='DATE',
            value_name='MODEL'
        )
        
        # Clean up the data
        df_long = df_long[df_long['MODEL'].notna()]  # Remove empty cells
        df_long = df_long[df_long['MODEL'] != '']    # Remove empty strings
        df_long = df_long[df_long['MODEL'] != 'OFF'] # Remove 'OFF' entries
        
        # Split comma-separated models into separate rows
        df_long['MODEL'] = df_long['MODEL'].str.split(', ')
        df_long = df_long.explode('MODEL')
        
        # Group by model and date, collect all chatters
        grouped = df_long.groupby(['MODEL', 'DATE'])[input_df.columns[0]].apply(
            lambda x: ', '.join(sorted(x))
        ).reset_index()
        
        # Pivot to get models as rows and dates as columns
        pivoted = grouped.pivot(
            index='MODEL',
            columns='DATE',
            values=input_df.columns[0]
        )
        
        # Reorder columns to match original date order
        pivoted = pivoted[date_columns]
        
        # Sort models alphabetically
        final_df = pivoted.sort_index()
        
        # Fill empty cells with 'OFF'
        final_df = final_df.fillna('OFF')
        
        # Reset index to make MODEL a column
        final_df = final_df.reset_index()
        
        return final_df
    except Exception as e:
        return pd.DataFrame({"Error": [str(e)]})

def convert_schedule(file, direction):
    if direction == "Format A β†’ Format B":
        df = process_file_a_to_b(file)
    else:
        df = process_file_b_to_a(file)
    # Save to temp file for download
    with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
        df.to_excel(tmp.name, index=False)
        adjust_excel_formatting(tmp.name)
        tmp.seek(0)
        data = tmp.read()
    return df, (tmp.name,)

def download_file(file_tuple):
    return file_tuple[0]

demo = gr.Blocks()
with demo:
    gr.Markdown("# πŸ“… Schedule Converter")
    gr.Markdown("Upload your schedule Excel file, select conversion direction, and download the result.")
    with gr.Row():
        file = gr.File(label="Upload Schedule File", type="file")
        direction = gr.Dropdown([
            "Format A β†’ Format B",
            "Format B β†’ Format A"
        ], value="Format A β†’ Format B", label="Conversion Direction")
    with gr.Row():
        process_btn = gr.Button("Process File", variant="primary")
        reset_btn = gr.Button("Upload New File")
    output_table = gr.Dataframe(label="Preview", wrap=True)
    download_button = gr.Button("Download Processed File", visible=False)
    temp_file_path = gr.State(value=None)
    def reset_components():
        return [None, pd.DataFrame(), None, gr.update(visible=False)]
    def process_and_show(file, direction):
        df, out_path = convert_schedule(file, direction)
        if out_path:
            return df, out_path, gr.update(visible=True)
        return df, None, gr.update(visible=False)
    process_btn.click(
        process_and_show,
        inputs=[file, direction],
        outputs=[output_table, temp_file_path, download_button]
    )
    reset_btn.click(
        reset_components,
        outputs=[file, output_table, temp_file_path, download_button]
    )
    download_button.click(
        download_file,
        inputs=temp_file_path,
        outputs=gr.File(label="Processed Schedule")
    )

demo.launch()