kreemyyyy's picture
Update app.py
b342da6 verified
import os
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
from math import atan2, degrees
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV"
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2
def detect_paper_angle(image, bounding_box):
x1, y1, x2, y2 = bounding_box
roi = np.array(image)[y1:y2, x1:x2]
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
if lines is not None:
longest_line = max(
lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1]))
)
x1_line, y1_line, x2_line, y2_line = longest_line[0]
dx = x2_line - x1_line
dy = y2_line - y1_line
angle = degrees(atan2(dy, dx))
return angle
else:
return 0
def process_image(image, text):
try:
# Initialize Roboflow
rf = Roboflow(api_key=ROBOFLOW_API_KEY)
logging.debug("Initialized Roboflow API.")
project = rf.workspace().project(PROJECT_NAME)
logging.debug("Accessed project in Roboflow.")
model = project.version(VERSION_NUMBER).model
logging.debug("Loaded model from Roboflow.")
# Save input image temporarily
input_image_path = "/tmp/input_image.jpg"
image.save(input_image_path)
logging.debug(f"Input image saved to {input_image_path}.")
# Perform inference
logging.debug("Performing inference on the image...")
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
logging.debug(f"Inference result: {prediction}")
pil_image = image.convert("RGBA")
logging.debug("Converted image to RGBA mode.")
for obj in prediction['predictions']:
white_paper_width = obj['width']
white_paper_height = obj['height']
padding_x = int(white_paper_width * 0.1)
padding_y = int(white_paper_height * 0.1)
box_width = white_paper_width - 2 * padding_x
box_height = white_paper_height - 2 * padding_y
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
logging.debug(f"Detected paper angle: {angle} degrees.")
# (Optional) debug bounding box
debug_layer = pil_image.copy()
debug_draw = ImageDraw.Draw(debug_layer)
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
debug_layer.save("/tmp/debug_bounding_box.png")
logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
# Load pre-generated handwriting image
handwriting_path = "/path/to/pre-generated/handwriting.png"
handwriting_img = Image.open(handwriting_path).convert("RGBA")
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
pil_image = Image.alpha_composite(pil_image, text_layer)
logging.debug("Handwriting layer composited onto the original image.")
output_image_path = "/tmp/output_image.png"
pil_image.convert("RGB").save(output_image_path)
logging.debug(f"Output image saved to {output_image_path}.")
return output_image_path
except Exception as e:
logging.error(f"Error during image processing: {e}")
return None
def gradio_inference(image, text):
logging.debug("Starting Gradio inference.")
result_path = process_image(image, text)
if result_path:
logging.debug("Gradio inference successful.")
return result_path, result_path, "Processing complete! Download the image below."
logging.error("Gradio inference failed.")
return None, None, "An error occurred while processing the image. Please check the logs."
interface = gr.Interface(
fn=gradio_inference,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.Textbox(label="Enter Text to Overlay")
],
outputs=[
gr.Image(label="Processed Image Preview"),
gr.File(label="Download Processed Image"),
gr.Textbox(label="Status")
],
title="Roboflow Detection with Handwriting Overlay",
description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is composited accordingly.",
allow_flagging="never"
)
if __name__ == "__main__":
interface.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
enable_queue=True
)