Spaces:
Runtime error
Runtime error
File size: 8,200 Bytes
ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a a77b32c ed5c13a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
import logging
from roboflow import Roboflow
from PIL import Image, ImageDraw
import cv2
import numpy as np
import os
from math import atan2, degrees
import asyncio
from pyppeteer import launch
import multiprocessing
# Configure logging
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("debug.log"),
logging.StreamHandler()
]
)
# Roboflow and model configuration
ROBOFLOW_API_KEY = "KUP9w62eUcD5PrrRMJsV" # Replace with your API key
PROJECT_NAME = "model_verification_project"
VERSION_NUMBER = 2
# ----------------------------
# New: Run Pyppeteer code in a separate process
# ----------------------------
def generate_handwriting_image_process(text_prompt, screenshot_path, return_dict):
"""
This function runs in a separate process so that the Pyppeteer code
runs in the main thread of that process.
"""
import asyncio
from pyppeteer import launch
async def _generate():
browser = await launch(headless=True, args=['--no-sandbox', '--disable-setuid-sandbox'])
page = await browser.newPage()
await page.goto('https://www.calligraphr.com/en/font/', {'waitUntil': 'networkidle2'})
await page.waitForSelector('#text-input')
await page.type('#text-input', text_prompt)
await asyncio.sleep(2) # Wait for the handwriting preview to render
# Adjust these clip dimensions as needed for the correct area
await page.screenshot({
'path': screenshot_path,
'clip': {'x': 100, 'y': 200, 'width': 600, 'height': 150}
})
await browser.close()
return screenshot_path
# Create a new event loop for this process
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(_generate())
return_dict['result'] = result
def get_handwriting_image(text_prompt, screenshot_path="/tmp/handwriting.png"):
manager = multiprocessing.Manager()
return_dict = manager.dict()
process = multiprocessing.Process(target=generate_handwriting_image_process, args=(text_prompt, screenshot_path, return_dict))
process.start()
process.join()
return return_dict.get('result', None)
# ----------------------------
# Helper: Detect paper angle within bounding box
# ----------------------------
def detect_paper_angle(image, bounding_box):
x1, y1, x2, y2 = bounding_box
roi = np.array(image)[y1:y2, x1:x2]
gray = cv2.cvtColor(roi, cv2.COLOR_RGBA2GRAY)
edges = cv2.Canny(gray, 50, 150)
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=50, maxLineGap=10)
if lines is not None:
longest_line = max(lines, key=lambda line: np.linalg.norm((line[0][2] - line[0][0], line[0][3] - line[0][1])))
x1_line, y1_line, x2_line, y2_line = longest_line[0]
dx = x2_line - x1_line
dy = y2_line - y1_line
angle = degrees(atan2(dy, dx))
return angle
else:
return 0
# ----------------------------
# Main processing function
# ----------------------------
def process_image(image, text):
try:
# Initialize Roboflow
rf = Roboflow(api_key=ROBOFLOW_API_KEY)
logging.debug("Initialized Roboflow API.")
project = rf.workspace().project(PROJECT_NAME)
logging.debug("Accessed project in Roboflow.")
model = project.version(VERSION_NUMBER).model
logging.debug("Loaded model from Roboflow.")
# Save input image temporarily
input_image_path = "/tmp/input_image.jpg"
image.save(input_image_path)
logging.debug(f"Input image saved to {input_image_path}.")
# Perform inference
logging.debug("Performing inference on the image...")
prediction = model.predict(input_image_path, confidence=70, overlap=50).json()
logging.debug(f"Inference result: {prediction}")
pil_image = image.convert("RGBA")
logging.debug("Converted image to RGBA mode.")
# Process each detected object (assumed to be white paper)
for obj in prediction['predictions']:
white_paper_width = obj['width']
white_paper_height = obj['height']
padding_x = int(white_paper_width * 0.1)
padding_y = int(white_paper_height * 0.1)
box_width = white_paper_width - 2 * padding_x
box_height = white_paper_height - 2 * padding_y
logging.debug(f"Padded white paper dimensions: width={box_width}, height={box_height}.")
x1_padded = int(obj['x'] - white_paper_width / 2 + padding_x)
y1_padded = int(obj['y'] - white_paper_height / 2 + padding_y)
x2_padded = int(obj['x'] + white_paper_width / 2 - padding_x)
y2_padded = int(obj['y'] + white_paper_height / 2 - padding_y)
angle = detect_paper_angle(np.array(image), (x1_padded, y1_padded, x2_padded, y2_padded))
logging.debug(f"Detected paper angle: {angle} degrees.")
# For debugging: draw bounding box (optional)
debug_layer = pil_image.copy()
debug_draw = ImageDraw.Draw(debug_layer)
debug_draw.rectangle([(x1_padded, y1_padded), (x2_padded, y2_padded)], outline="red", width=3)
debug_layer.save("/tmp/debug_bounding_box.png")
logging.debug("Saved bounding box debug image to /tmp/debug_bounding_box.png.")
# Generate handwriting image using the separate process
handwriting_path = get_handwriting_image(text, "/tmp/handwriting.png")
if not handwriting_path:
logging.error("Handwriting image generation failed.")
continue
handwriting_img = Image.open(handwriting_path).convert("RGBA")
handwriting_img = handwriting_img.resize((box_width, box_height), Image.ANTIALIAS)
rotated_handwriting = handwriting_img.rotate(-angle, resample=Image.BICUBIC, expand=True)
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0))
paste_x = int(obj['x'] - rotated_handwriting.size[0] / 2)
paste_y = int(obj['y'] - rotated_handwriting.size[1] / 2)
text_layer.paste(rotated_handwriting, (paste_x, paste_y), rotated_handwriting)
pil_image = Image.alpha_composite(pil_image, text_layer)
logging.debug("Handwriting layer composited onto the original image.")
output_image_path = "/tmp/output_image.png"
pil_image.convert("RGB").save(output_image_path)
logging.debug(f"Output image saved to {output_image_path}.")
return output_image_path
except Exception as e:
logging.error(f"Error during image processing: {e}")
return None
# ----------------------------
# Gradio interface function
# ----------------------------
def gradio_inference(image, text):
logging.debug("Starting Gradio inference.")
result_path = process_image(image, text)
if result_path:
logging.debug("Gradio inference successful.")
return result_path, result_path, "Processing complete! Download the image below."
logging.error("Gradio inference failed.")
return None, None, "An error occurred while processing the image. Please check the logs."
# ----------------------------
# Gradio interface definition
# ----------------------------
interface = gr.Interface(
fn=gradio_inference,
inputs=[
gr.Image(type="pil", label="Upload an Image"),
gr.Textbox(label="Enter Text to Overlay")
],
outputs=[
gr.Image(label="Processed Image Preview"),
gr.File(label="Download Processed Image"),
gr.Textbox(label="Status")
],
title="Roboflow Detection with Handwriting Overlay",
description="Upload an image and enter text to overlay. The Roboflow model detects the white paper area, and a handwriting image is generated via Calligraphr using Pyppeteer. The output image is composited accordingly.",
allow_flagging="never"
)
if __name__ == "__main__":
logging.debug("Launching Gradio interface.")
interface.launch(share=True)
|