File size: 7,210 Bytes
cdf2807
aa57af7
cdf2807
aa57af7
 
ae5b4d4
aa3525b
aa57af7
bce6b06
aa57af7
bce6b06
 
aa57af7
bce6b06
 
 
a3de3da
aa57af7
72df82a
 
 
bce6b06
 
 
aa57af7
bce6b06
 
 
 
 
 
 
 
 
cdf2807
aa57af7
 
 
 
 
 
 
bce6b06
aa57af7
 
bce6b06
cdf2807
aa57af7
bce6b06
 
aa57af7
bce6b06
 
 
aa57af7
 
bce6b06
 
aa57af7
 
bce6b06
 
aa57af7
 
 
 
 
 
 
 
 
 
 
 
bce6b06
aa57af7
bce6b06
 
 
aa57af7
 
bce6b06
 
aa57af7
 
bce6b06
 
aa57af7
 
 
 
 
 
 
 
 
 
 
 
af26c90
aa57af7
bce6b06
 
aa57af7
 
bce6b06
aa57af7
 
6151f33
aa57af7
 
 
 
 
 
04f5c5a
ae5b4d4
aa57af7
 
 
 
bce6b06
aa57af7
 
 
 
 
 
bce6b06
 
aa57af7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bce6b06
aa57af7
04f5c5a
aa57af7
04f5c5a
aa57af7
 
 
 
 
 
 
 
 
 
 
04f5c5a
 
aa57af7
 
04f5c5a
aa57af7
 
 
 
 
 
 
 
04f5c5a
 
2cc4cc3
bce6b06
aa57af7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import pandas as pd
import openpyxl
import gradio as gr
import io
import base64
from datetime import datetime

def convert_schedule(file_path, direction):
    if file_path is None:
        return pd.DataFrame({'Error': ['Please upload a file']}), None
        
    try:
        # 1. Load raw header rows to determine day labels
        raw = pd.read_excel(file_path, header=None)
        header1 = raw.iloc[0, 1:].astype(object)
        header2 = raw.iloc[1, 1:].astype(object)

        # Decide which header row to use: prefer second if fully populated
        # FIX: Convert to string before using .str accessor and handle NaN values
        header2_str = header2.fillna('').astype(str)
        if header2.notna().all() and not header2_str.str.startswith('Unnamed').any():
            days = header2.tolist()
            data_start = 2
        else:
            # Forward-fill merged first-row headers
            days = []
            last = None
            for val in header1:
                if pd.isna(val) or str(val).startswith('Unnamed'):
                    days.append(last)
                else:
                    last = str(val)
                    days.append(last)
            data_start = 1

        # 2. Load actual data using resolved day columns
        df = pd.read_excel(
            file_path,
            header=data_start,
            index_col=0,
            usecols=[0] + list(range(1, len(days) + 1))
        )
        df.columns = [str(day) for day in days]

        # 3. Retain original day column order
        day_cols = list(df.columns)

        # 4. Build assignment mapping via explicit iteration
        assignments = {}
        if direction == 'A to B':
            # Models in rows → Texters as rows
            for model in df.index.astype(str):
                for day in day_cols:
                    cell = df.at[model, day]
                    if pd.isna(cell):
                        continue
                    for texter in str(cell).split(','):
                        texter = texter.strip()
                        if not texter or texter.lower() in ['nan', 'none', '']:
                            continue
                        assignments.setdefault(texter, {d: [] for d in day_cols})
                        assignments[texter][day].append(model)
            
            if not assignments:
                result = pd.DataFrame(columns=day_cols)
                first_col_name = 'Texter'
            else:
                index = sorted(assignments.keys())
                result = pd.DataFrame(index=index, columns=day_cols)
                first_col_name = 'Texter'
                for texter, days_map in assignments.items():
                    for day in day_cols:
                        models = days_map.get(day, [])
                        result.at[texter, day] = ', '.join(models) if models else 'OFF'
        else:
            # Texters in rows → Models as rows
            for texter in df.index.astype(str):
                for day in day_cols:
                    cell = df.at[texter, day]
                    if pd.isna(cell):
                        continue
                    for model in str(cell).split(','):
                        model = model.strip()
                        if not model or model.lower() in ['nan', 'none', '']:
                            continue
                        assignments.setdefault(model, {d: [] for d in day_cols})
                        assignments[model][day].append(texter)
            
            if not assignments:
                result = pd.DataFrame(columns=day_cols)
                first_col_name = 'Model'
            else:
                index = sorted(assignments.keys())
                result = pd.DataFrame(index=index, columns=day_cols)
                first_col_name = 'Model'
                for model, days_map in assignments.items():
                    for day in day_cols:
                        texters = days_map.get(day, [])
                        result.at[model, day] = ', '.join(texters) if texters else 'OFF'

        # 5. Cleanup axis names
        result.index.name = None
        result.columns.name = None

        # For display, include index as a column
        display_df = result.reset_index().rename(columns={'index': first_col_name})

        # 6. Create downloadable file using in-memory approach
        result_clean = result.copy().fillna('OFF')
        
        # Ensure all values are strings
        for col in result_clean.columns:
            result_clean[col] = result_clean[col].astype(str)

        # Create CSV file in memory (more reliable than Excel)
        download_df = result_clean.reset_index().rename(columns={'index': first_col_name})
        
        # Create CSV content
        csv_buffer = io.StringIO()
        download_df.to_csv(csv_buffer, index=False)
        csv_content = csv_buffer.getvalue()
        
        # Create filename with timestamp
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"converted_schedule_{timestamp}.csv"
        
        # Return the CSV content for download
        return display_df, (csv_content.encode('utf-8'), filename)

    except Exception as e:
        error_msg = f"Error processing file: {str(e)}"
        print(f"DEBUG: {error_msg}")
        error_df = pd.DataFrame({'Error': [error_msg]})
        return error_df, None

# Wrapper function to handle the file download properly
def process_and_download(file_path, direction):
    display_result, download_data = convert_schedule(file_path, direction)
    
    if download_data is None:
        return display_result, None
    
    # Create a temporary file that Gradio can serve
    import tempfile
    import os
    
    excel_content, filename = download_data
    
    # Save to a temporary file in the system temp directory
    temp_dir = tempfile.gettempdir()
    temp_path = os.path.join(temp_dir, filename)
    
    # Write CSV content
    with open(temp_path, 'w', encoding='utf-8') as f:
        f.write(excel_content.decode('utf-8'))
    
    return display_result, temp_path

# Create the interface
iface = gr.Interface(
    fn=process_and_download,
    inputs=[
        gr.File(
            label='Upload Weekly Schedule (.xlsx)', 
            file_count='single', 
            file_types=['.xlsx', '.xls']
        ),
        gr.Radio(
            ['A to B', 'B to A'], 
            label='Convert Direction', 
            value='A to B',
            info='A to B: Models→Texters, B to A: Texters→Models'
        )
    ],
    outputs=[
        gr.Dataframe(label='Converted Schedule (Preview)', wrap=True),
        gr.File(label='Download Converted Schedule (.csv)')
    ],
    title='🔄 7-Day Schedule Converter',
    description=(
        '**How to use:**\n'
        '1. Upload your Excel file with a 7-day schedule\n'
        '2. Choose conversion direction\n'
        '3. Preview the result and download the converted file\n\n'
        '*Supports merged headers and handles Models ↔ Texters conversion*'
    ),
    flagging_mode='never'
)

if __name__ == "__main__":
    iface.launch(
        server_name='0.0.0.0', 
        server_port=7860,
        share=False
    )