Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,26 @@
|
|
1 |
import pandas as pd
|
|
|
2 |
import gradio as gr
|
3 |
-
import
|
|
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
def
|
7 |
if file_path is None:
|
8 |
-
return pd.DataFrame({'
|
9 |
|
10 |
try:
|
11 |
-
#
|
12 |
raw = pd.read_excel(file_path, header=None)
|
13 |
header1 = raw.iloc[0, 1:].astype(object)
|
14 |
header2 = raw.iloc[1, 1:].astype(object)
|
15 |
|
|
|
16 |
if header2.notna().all() and not header2.str.startswith('Unnamed').any():
|
17 |
days = header2.tolist()
|
18 |
data_start = 2
|
19 |
else:
|
|
|
20 |
days = []
|
21 |
last = None
|
22 |
for val in header1:
|
@@ -27,79 +31,163 @@ def convert_and_save_local(file_path, direction):
|
|
27 |
days.append(last)
|
28 |
data_start = 1
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
df.columns = [str(day) for day in days]
|
|
|
|
|
32 |
day_cols = list(df.columns)
|
33 |
|
|
|
34 |
assignments = {}
|
35 |
if direction == 'A to B':
|
|
|
36 |
for model in df.index.astype(str):
|
37 |
for day in day_cols:
|
38 |
cell = df.at[model, day]
|
39 |
-
if pd.isna(cell):
|
|
|
40 |
for texter in str(cell).split(','):
|
41 |
texter = texter.strip()
|
42 |
-
if not texter or texter.lower() in ['nan', 'none', '']:
|
|
|
43 |
assignments.setdefault(texter, {d: [] for d in day_cols})
|
44 |
assignments[texter][day].append(model)
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
else:
|
|
|
47 |
for texter in df.index.astype(str):
|
48 |
for day in day_cols:
|
49 |
cell = df.at[texter, day]
|
50 |
-
if pd.isna(cell):
|
|
|
51 |
for model in str(cell).split(','):
|
52 |
model = model.strip()
|
53 |
-
if not model or model.lower() in ['nan', 'none', '']:
|
|
|
54 |
assignments.setdefault(model, {d: [] for d in day_cols})
|
55 |
assignments[model][day].append(texter)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
for
|
65 |
-
|
66 |
-
|
|
|
67 |
|
|
|
68 |
result.index.name = None
|
69 |
result.columns.name = None
|
|
|
|
|
70 |
display_df = result.reset_index().rename(columns={'index': first_col_name})
|
71 |
-
|
72 |
-
#
|
73 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
74 |
-
local_filename = f"converted_schedule_{timestamp}.csv"
|
75 |
-
local_path = os.path.join(os.getcwd(), local_filename)
|
76 |
-
|
77 |
result_clean = result.copy().fillna('OFF')
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
download_df = result_clean.reset_index().rename(columns={'index': first_col_name})
|
79 |
-
download_df.to_csv(local_path, index=False)
|
80 |
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
except Exception as e:
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
89 |
iface = gr.Interface(
|
90 |
-
fn=
|
91 |
inputs=[
|
92 |
-
gr.File(
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
],
|
95 |
outputs=[
|
96 |
-
gr.Dataframe(label='Converted Schedule (Preview)'),
|
97 |
-
gr.
|
98 |
],
|
99 |
-
title='🔄 Schedule Converter
|
100 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
flagging_mode='never'
|
102 |
)
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
-
iface.launch(
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import openpyxl
|
3 |
import gradio as gr
|
4 |
+
import io
|
5 |
+
import base64
|
6 |
from datetime import datetime
|
7 |
|
8 |
+
def convert_schedule(file_path, direction):
|
9 |
if file_path is None:
|
10 |
+
return pd.DataFrame({'Error': ['Please upload a file']}), None
|
11 |
|
12 |
try:
|
13 |
+
# 1. Load raw header rows to determine day labels
|
14 |
raw = pd.read_excel(file_path, header=None)
|
15 |
header1 = raw.iloc[0, 1:].astype(object)
|
16 |
header2 = raw.iloc[1, 1:].astype(object)
|
17 |
|
18 |
+
# Decide which header row to use: prefer second if fully populated
|
19 |
if header2.notna().all() and not header2.str.startswith('Unnamed').any():
|
20 |
days = header2.tolist()
|
21 |
data_start = 2
|
22 |
else:
|
23 |
+
# Forward-fill merged first-row headers
|
24 |
days = []
|
25 |
last = None
|
26 |
for val in header1:
|
|
|
31 |
days.append(last)
|
32 |
data_start = 1
|
33 |
|
34 |
+
# 2. Load actual data using resolved day columns
|
35 |
+
df = pd.read_excel(
|
36 |
+
file_path,
|
37 |
+
header=data_start,
|
38 |
+
index_col=0,
|
39 |
+
usecols=[0] + list(range(1, len(days) + 1))
|
40 |
+
)
|
41 |
df.columns = [str(day) for day in days]
|
42 |
+
|
43 |
+
# 3. Retain original day column order
|
44 |
day_cols = list(df.columns)
|
45 |
|
46 |
+
# 4. Build assignment mapping via explicit iteration
|
47 |
assignments = {}
|
48 |
if direction == 'A to B':
|
49 |
+
# Models in rows → Texters as rows
|
50 |
for model in df.index.astype(str):
|
51 |
for day in day_cols:
|
52 |
cell = df.at[model, day]
|
53 |
+
if pd.isna(cell):
|
54 |
+
continue
|
55 |
for texter in str(cell).split(','):
|
56 |
texter = texter.strip()
|
57 |
+
if not texter or texter.lower() in ['nan', 'none', '']:
|
58 |
+
continue
|
59 |
assignments.setdefault(texter, {d: [] for d in day_cols})
|
60 |
assignments[texter][day].append(model)
|
61 |
+
|
62 |
+
if not assignments:
|
63 |
+
result = pd.DataFrame(columns=day_cols)
|
64 |
+
first_col_name = 'Texter'
|
65 |
+
else:
|
66 |
+
index = sorted(assignments.keys())
|
67 |
+
result = pd.DataFrame(index=index, columns=day_cols)
|
68 |
+
first_col_name = 'Texter'
|
69 |
+
for texter, days_map in assignments.items():
|
70 |
+
for day in day_cols:
|
71 |
+
models = days_map.get(day, [])
|
72 |
+
result.at[texter, day] = ', '.join(models) if models else 'OFF'
|
73 |
else:
|
74 |
+
# Texters in rows → Models as rows
|
75 |
for texter in df.index.astype(str):
|
76 |
for day in day_cols:
|
77 |
cell = df.at[texter, day]
|
78 |
+
if pd.isna(cell):
|
79 |
+
continue
|
80 |
for model in str(cell).split(','):
|
81 |
model = model.strip()
|
82 |
+
if not model or model.lower() in ['nan', 'none', '']:
|
83 |
+
continue
|
84 |
assignments.setdefault(model, {d: [] for d in day_cols})
|
85 |
assignments[model][day].append(texter)
|
86 |
+
|
87 |
+
if not assignments:
|
88 |
+
result = pd.DataFrame(columns=day_cols)
|
89 |
+
first_col_name = 'Model'
|
90 |
+
else:
|
91 |
+
index = sorted(assignments.keys())
|
92 |
+
result = pd.DataFrame(index=index, columns=day_cols)
|
93 |
+
first_col_name = 'Model'
|
94 |
+
for model, days_map in assignments.items():
|
95 |
+
for day in day_cols:
|
96 |
+
texters = days_map.get(day, [])
|
97 |
+
result.at[model, day] = ', '.join(texters) if texters else 'OFF'
|
98 |
|
99 |
+
# 5. Cleanup axis names
|
100 |
result.index.name = None
|
101 |
result.columns.name = None
|
102 |
+
|
103 |
+
# For display, include index as a column
|
104 |
display_df = result.reset_index().rename(columns={'index': first_col_name})
|
105 |
+
|
106 |
+
# 6. Create downloadable file using in-memory approach
|
|
|
|
|
|
|
|
|
107 |
result_clean = result.copy().fillna('OFF')
|
108 |
+
|
109 |
+
# Ensure all values are strings
|
110 |
+
for col in result_clean.columns:
|
111 |
+
result_clean[col] = result_clean[col].astype(str)
|
112 |
+
|
113 |
+
# Create CSV file in memory (more reliable than Excel)
|
114 |
download_df = result_clean.reset_index().rename(columns={'index': first_col_name})
|
|
|
115 |
|
116 |
+
# Create CSV content
|
117 |
+
csv_buffer = io.StringIO()
|
118 |
+
download_df.to_csv(csv_buffer, index=False)
|
119 |
+
csv_content = csv_buffer.getvalue()
|
120 |
|
121 |
+
# Create filename with timestamp
|
122 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
123 |
+
filename = f"converted_schedule_{timestamp}.csv"
|
124 |
+
|
125 |
+
# Return the CSV content for download
|
126 |
+
return display_df, (csv_content.encode('utf-8'), filename)
|
127 |
|
128 |
except Exception as e:
|
129 |
+
error_msg = f"Error processing file: {str(e)}"
|
130 |
+
print(f"DEBUG: {error_msg}")
|
131 |
+
error_df = pd.DataFrame({'Error': [error_msg]})
|
132 |
+
return error_df, None
|
133 |
+
|
134 |
+
# Wrapper function to handle the file download properly
|
135 |
+
def process_and_download(file_path, direction):
|
136 |
+
display_result, download_data = convert_schedule(file_path, direction)
|
137 |
+
|
138 |
+
if download_data is None:
|
139 |
+
return display_result, None
|
140 |
+
|
141 |
+
# Create a temporary file that Gradio can serve
|
142 |
+
import tempfile
|
143 |
+
import os
|
144 |
+
|
145 |
+
excel_content, filename = download_data
|
146 |
+
|
147 |
+
# Save to a temporary file in the system temp directory
|
148 |
+
temp_dir = tempfile.gettempdir()
|
149 |
+
temp_path = os.path.join(temp_dir, filename)
|
150 |
+
|
151 |
+
# Write CSV content
|
152 |
+
with open(temp_path, 'w', encoding='utf-8') as f:
|
153 |
+
f.write(excel_content.decode('utf-8'))
|
154 |
+
|
155 |
+
return display_result, temp_path
|
156 |
|
157 |
+
# Create the interface
|
158 |
iface = gr.Interface(
|
159 |
+
fn=process_and_download,
|
160 |
inputs=[
|
161 |
+
gr.File(
|
162 |
+
label='Upload Weekly Schedule (.xlsx)',
|
163 |
+
file_count='single',
|
164 |
+
file_types=['.xlsx', '.xls']
|
165 |
+
),
|
166 |
+
gr.Radio(
|
167 |
+
['A to B', 'B to A'],
|
168 |
+
label='Convert Direction',
|
169 |
+
value='A to B',
|
170 |
+
info='A to B: Models→Texters, B to A: Texters→Models'
|
171 |
+
)
|
172 |
],
|
173 |
outputs=[
|
174 |
+
gr.Dataframe(label='Converted Schedule (Preview)', wrap=True),
|
175 |
+
gr.File(label='Download Converted Schedule (.csv)')
|
176 |
],
|
177 |
+
title='🔄 7-Day Schedule Converter',
|
178 |
+
description=(
|
179 |
+
'**How to use:**\n'
|
180 |
+
'1. Upload your Excel file with a 7-day schedule\n'
|
181 |
+
'2. Choose conversion direction\n'
|
182 |
+
'3. Preview the result and download the converted file\n\n'
|
183 |
+
'*Supports merged headers and handles Models ↔ Texters conversion*'
|
184 |
+
),
|
185 |
flagging_mode='never'
|
186 |
)
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
+
iface.launch(
|
190 |
+
server_name='0.0.0.0',
|
191 |
+
server_port=7860,
|
192 |
+
share=False
|
193 |
+
)
|