File size: 2,348 Bytes
b72431a d120f1f b72431a d120f1f b72431a d120f1f b72431a d120f1f b2414b4 d120f1f b2414b4 d120f1f b2414b4 d120f1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
import torch
from transformers import pipeline
app_title = "Portuguese Counter Hate Speech Detection (NFAA)"
app_description = """
This app is the culmination of the kNOwHATE consortium project, which aimed to tackle Online Hate Speech in the Portuguese comunity. It serves as an user-friendly interface to classify text and identify instances of Hate Speech.
This app leverages state-of-the-art Natural Language Processing models developed in the scope of this project to classify harmful text.
Select a model from the dropdown menu and input your text to see the classification results. Explore the examples of Hate Speech and Non-Hate Speech offered, and join us in fostering a safer and more respectful online community.
For more information about the kNOwHATE project and its initiatives, visit our website [here](https://knowhate.eu) and to explore and use these models visit our Hugging Face page [here](https://huggingface.co/knowhate).
"""
app_examples = [
["As pessoas tem que perceber que ser 'panasca' não é deixar de ser homem, é deixar de ser humano 😂😂", "", "knowhate/twt-bertimbau"],
["Vamo-nos unir para criar um mundo mais inclusivo e tolerante.", "", "knowhate/twt-xlm-base"]
]
model_list = [
"knowhate/twt-bertimbau",
"knowhate/twt-xlm-base",
]
def predict(text, target, chosen_model):
# Initialize the pipeline with the chosen model
model_pipeline = pipeline("text-classification", model=chosen_model)
result = model_pipeline(text)
predicted_label = result[0]['label']
predicted_score = result[0]['score']
non_predicted_label = "Hate Speech" if predicted_label == "Non Hate Speech" else "Non Hate Speech"
non_predicted_score = 1 - predicted_score
scores_dict = {
predicted_label: predicted_score,
non_predicted_label: non_predicted_score
}
return scores_dict
inputs = [
gr.Textbox(label="Context", value= app_examples[0][0]),
gr.Textbox(label="Target", value= app_examples[0][1]),
gr.Dropdown(label="Model", choices=model_list, value=model_list[0])
]
outputs = [
gr.Label(label="Result"),
]
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title=app_title,
description=app_description, examples=app_examples, theme=gr.themes.Base(primary_hue="red")).launch() |