File size: 2,100 Bytes
739086d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
"""
Diabetes Prediction Web App
"""

import numpy as np
import pickle
import streamlit as st


# loading the saved model
loaded_model = pickle.load(open('LogisticRegression_model.pkl', 'rb'))


# creating a function for Prediction

def diabetes_prediction(input_data):
    

    # changing the input_data to numpy array
    input_data_as_numpy_array = np.asarray(input_data)

    # reshape the array as we are predicting for one instance
    input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

    prediction = loaded_model.predict(input_data_reshaped)
    print(prediction)

    if (prediction[0] == 0):
      return 'The person is not diabetic'
    else:
      return 'The person is diabetic'
  
    
  
def main():
    
    # giving a title
    st.title('Diabetes Prediction Web App')
    
    
    # getting the input data from the user
    
    Pregnancies = st.text_input('Number of Pregnancies')
    Glucose = st.text_input('Glucose Level')
    BloodPressure = st.text_input('Blood Pressure Value')
    SkinThickness = st.text_input('Skin Thickness Value')
    Insulin = st.text_input('Insulin Level')
    BMI = st.text_input('BMI Value')
    DiabetesPedigreeFunction = st.text_input('Diabetes Pedigree Function Value')
    Age = st.text_input('Age of the Person')
    
    
        # code for Prediction
    diagnosis = ''

    # creating a button for Prediction

    if st.button('Diabetes Test Result'):
        try:
            # Convert input data to floating-point numbers with error handling
            input_data = [
                float(Pregnancies),
                float(Glucose),
                float(BloodPressure),
                float(SkinThickness),
                float(Insulin),
                float(BMI),
                float(DiabetesPedigreeFunction),
                float(Age)
            ]
            diagnosis = diabetes_prediction(input_data)
        except ValueError as e:
            diagnosis = "Invalid input. Please enter numeric values for all fields."

    st.success(diagnosis)

if __name__ == '__main__':
    main()