kkawamu1's picture
Commit codes
3f13a7b
# Before running, install required packages:
{% if notebook %}
!
{%- else %}
#
{%- endif %}
pip install datasets transformers[sentencepiece] accelerate sacrebleu==1.4.14 sacremoses
import collections
import logging
import math
import random
import babel
import datasets
import numpy as np
import torch
import transformers
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from transformers import (AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForSeq2Seq, MBartTokenizer,
MBartTokenizerFast, Seq2SeqTrainer, Seq2SeqTrainingArguments,
default_data_collator, get_scheduler)
from transformers.utils.versions import require_version
{{ header("Setup") }}
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0")
set_seed({{ seed }})
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.ERROR,
)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
{{ header("Load model and dataset") }}
{% if subset == 'default' %}
datasets = load_dataset('{{dataset}}')
{% else %}
datasets = load_dataset('{{dataset}}', '{{ subset }}')
{% endif %}
metric = load_metric("sacrebleu")
model_checkpoint = "{{model_checkpoint}}"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
{% if pretrained %}
model = AutoModelFor{{task}}.from_pretrained(model_checkpoint)
{% else %}
config = AutoConfig.from_pretrained(model_checkpoint)
model = AutoModelFor{{task}}.from_config(config)
{% endif %}
model.resize_token_embeddings(len(tokenizer))
model_name = model_checkpoint.split("/")[-1]
{{ header("Preprocessing") }}
source_lang = '{{ source_language }}'
target_lang = '{{ target_language }}'
{% if 'mbart' in model_checkpoint %}
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
target_lang is not None and source_lang is not None
), "mBart requires --target_lang and --source_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[target_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(target_lang)
{% endif %}
{% if 't5' in model_checkpoint %}
if model_checkpoint in ["t5-small", "t5-base", "t5-larg", "t5-3b", "t5-11b"]:
for language in (source_lang, target_lang):
if language != language[:2]:
logging.warning(
'Extended language code %s not supported. Falling back on %s.',
language, language[:2]
)
lang_id_to_string = {
source_lang: babel.Locale(source_lang[:2]).english_name,
target_lang: babel.Locale(target_lang[:2]).english_name,
}
src_str = 'translate {}'.format(lang_id_to_string[source_lang])
tgt_str = ' to {}: '.format(lang_id_to_string[target_lang])
prefix = src_str + tgt_str
else:
prefix = ""
{% else %}
prefix = ""
{% endif %}
{% if 'mbart' in model_checkpoint %}
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
label = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
source_code = [item for item in label if item.startswith(source_lang)][0]
target_code = [item for item in label if item.startswith(target_lang)][0]
if source_lang is not None:
tokenizer.src_lang = source_code
if target_lang is not None:
tokenizer.tgt_lang = target_code
{% endif %}
max_input_length = {{ block_size }}
max_target_length = {{ block_size }}
def preprocess_function(examples):
inputs = [prefix + ex[source_lang] for ex in examples["translation"]]
targets = [ex[target_lang] for ex in examples["translation"]]
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_datasets = datasets.map(preprocess_function, batched=True, num_proc=4, remove_columns=list(
set(sum(list(datasets.column_names.values()), []))), desc="Running tokenizer on dataset")
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
batch_size = {{ batch_size }}
{{ header("Training") }}
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [[label.strip()] for label in decoded_labels]
result = metric.compute(predictions=decoded_preds,
references=decoded_labels)
return {"bleu": result["score"]}
def postprocess(predictions, labels):
predictions = predictions.cpu().numpy()
labels = labels.cpu().numpy()
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [[label.strip()] for label in decoded_labels]
return decoded_preds, decoded_labels
training_args = Seq2SeqTrainingArguments(
output_dir=f"{model_name}-finetuned",
per_device_train_batch_size={{ batch_size }},
per_device_eval_batch_size={{ batch_size }},
evaluation_strategy='epoch',
logging_strategy='epoch',
save_strategy='epoch',
optim='{{ optimizer }}',
learning_rate={{ lr }},
num_train_epochs={{ num_epochs }},
gradient_accumulation_steps={{ gradient_accumulation_steps }},
lr_scheduler_type='{{ lr_scheduler_type }}',
warmup_steps={{ num_warmup_steps }},
{% if use_weight_decay%}
weight_decay={{ weight_decay }},
{% endif %}
push_to_hub=False,
dataloader_num_workers=0,
{% if task=="MaskedLM" %}
{% if whole_word_masking %}
remove_unused_columns=False,
{% endif %}
{% endif %}
load_best_model_at_end=True,
log_level='error'
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=lm_datasets["{{ train }}"],
eval_dataset=lm_datasets["{{ validation }}"],
data_collator=data_collator,
)
train_result = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
eval_results = trainer.evaluate()
trainer.log_metrics("eval", eval_results)
trainer.save_metrics("eval", eval_results)