Spaces:
Runtime error
Runtime error
File size: 7,722 Bytes
3f13a7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Before running, install required packages:
{% if notebook %}
!
{%- else %}
#
{%- endif %}
pip install datasets transformers[sentencepiece] accelerate sacrebleu==1.4.14 sacremoses
import collections
import logging
import math
import random
import babel
import datasets
import numpy as np
import torch
import transformers
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from transformers import (AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForSeq2Seq, MBartTokenizer,
MBartTokenizerFast, Seq2SeqTrainer, Seq2SeqTrainingArguments,
default_data_collator, get_scheduler)
from transformers.utils.versions import require_version
{{ header("Setup") }}
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0")
set_seed({{ seed }})
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.ERROR,
)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
{{ header("Load model and dataset") }}
{% if subset == 'default' %}
datasets = load_dataset('{{dataset}}')
{% else %}
datasets = load_dataset('{{dataset}}', '{{ subset }}')
{% endif %}
metric = load_metric("sacrebleu")
model_checkpoint = "{{model_checkpoint}}"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
{% if pretrained %}
model = AutoModelFor{{task}}.from_pretrained(model_checkpoint)
{% else %}
config = AutoConfig.from_pretrained(model_checkpoint)
model = AutoModelFor{{task}}.from_config(config)
{% endif %}
model.resize_token_embeddings(len(tokenizer))
model_name = model_checkpoint.split("/")[-1]
{{ header("Preprocessing") }}
source_lang = '{{ source_language }}'
target_lang = '{{ target_language }}'
{% if 'mbart' in model_checkpoint %}
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
target_lang is not None and source_lang is not None
), "mBart requires --target_lang and --source_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[target_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(target_lang)
{% endif %}
{% if 't5' in model_checkpoint %}
if model_checkpoint in ["t5-small", "t5-base", "t5-larg", "t5-3b", "t5-11b"]:
for language in (source_lang, target_lang):
if language != language[:2]:
logging.warning(
'Extended language code %s not supported. Falling back on %s.',
language, language[:2]
)
lang_id_to_string = {
source_lang: babel.Locale(source_lang[:2]).english_name,
target_lang: babel.Locale(target_lang[:2]).english_name,
}
src_str = 'translate {}'.format(lang_id_to_string[source_lang])
tgt_str = ' to {}: '.format(lang_id_to_string[target_lang])
prefix = src_str + tgt_str
else:
prefix = ""
{% else %}
prefix = ""
{% endif %}
{% if 'mbart' in model_checkpoint %}
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
label = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
source_code = [item for item in label if item.startswith(source_lang)][0]
target_code = [item for item in label if item.startswith(target_lang)][0]
if source_lang is not None:
tokenizer.src_lang = source_code
if target_lang is not None:
tokenizer.tgt_lang = target_code
{% endif %}
max_input_length = {{ block_size }}
max_target_length = {{ block_size }}
def preprocess_function(examples):
inputs = [prefix + ex[source_lang] for ex in examples["translation"]]
targets = [ex[target_lang] for ex in examples["translation"]]
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, truncation=True)
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenized_datasets = datasets.map(preprocess_function, batched=True, num_proc=4, remove_columns=list(
set(sum(list(datasets.column_names.values()), []))), desc="Running tokenizer on dataset")
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
batch_size = {{ batch_size }}
{{ header("Training") }}
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [[label.strip()] for label in decoded_labels]
result = metric.compute(predictions=decoded_preds,
references=decoded_labels)
return {"bleu": result["score"]}
def postprocess(predictions, labels):
predictions = predictions.cpu().numpy()
labels = labels.cpu().numpy()
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [[label.strip()] for label in decoded_labels]
return decoded_preds, decoded_labels
training_args = Seq2SeqTrainingArguments(
output_dir=f"{model_name}-finetuned",
per_device_train_batch_size={{ batch_size }},
per_device_eval_batch_size={{ batch_size }},
evaluation_strategy='epoch',
logging_strategy='epoch',
save_strategy='epoch',
optim='{{ optimizer }}',
learning_rate={{ lr }},
num_train_epochs={{ num_epochs }},
gradient_accumulation_steps={{ gradient_accumulation_steps }},
lr_scheduler_type='{{ lr_scheduler_type }}',
warmup_steps={{ num_warmup_steps }},
{% if use_weight_decay%}
weight_decay={{ weight_decay }},
{% endif %}
push_to_hub=False,
dataloader_num_workers=0,
{% if task=="MaskedLM" %}
{% if whole_word_masking %}
remove_unused_columns=False,
{% endif %}
{% endif %}
load_best_model_at_end=True,
log_level='error'
)
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=lm_datasets["{{ train }}"],
eval_dataset=lm_datasets["{{ validation }}"],
data_collator=data_collator,
)
train_result = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
eval_results = trainer.evaluate()
trainer.log_metrics("eval", eval_results)
trainer.save_metrics("eval", eval_results)
|