File size: 7,722 Bytes
3f13a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Before running, install required packages:
{% if notebook %}

!
{%- else %}
#
{%- endif %}
pip install datasets transformers[sentencepiece] accelerate sacrebleu==1.4.14 sacremoses

import collections
import logging
import math
import random

import babel
import datasets
import numpy as np
import torch
import transformers
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from transformers import (AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer,
                          DataCollatorForLanguageModeling,
                          DataCollatorForSeq2Seq, MBartTokenizer,
                          MBartTokenizerFast, Seq2SeqTrainer, Seq2SeqTrainingArguments,
                          default_data_collator, get_scheduler)
from transformers.utils.versions import require_version

{{ header("Setup") }}


logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0")
set_seed({{ seed }})
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.ERROR,
)
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()

{{ header("Load model and dataset") }}

{% if subset == 'default' %}
datasets = load_dataset('{{dataset}}')
{% else %}
datasets = load_dataset('{{dataset}}', '{{ subset }}')
{% endif %}
metric = load_metric("sacrebleu")
model_checkpoint = "{{model_checkpoint}}"    
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
{% if pretrained %}
model = AutoModelFor{{task}}.from_pretrained(model_checkpoint)
{% else %}
config = AutoConfig.from_pretrained(model_checkpoint)
model = AutoModelFor{{task}}.from_config(config)
{% endif %}
model.resize_token_embeddings(len(tokenizer))
model_name = model_checkpoint.split("/")[-1]

{{ header("Preprocessing") }}

source_lang = '{{ source_language }}'
target_lang = '{{ target_language }}'
{% if 'mbart' in model_checkpoint %}

# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
    assert (
        target_lang is not None and source_lang is not None
    ), "mBart requires --target_lang and --source_lang"
    if isinstance(tokenizer, MBartTokenizer):
        model.config.decoder_start_token_id = tokenizer.lang_code_to_id[target_lang]
    else:
        model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(target_lang)

{% endif %}
{% if 't5' in model_checkpoint %}
if model_checkpoint in ["t5-small", "t5-base", "t5-larg", "t5-3b", "t5-11b"]:
    for language in (source_lang, target_lang):
        if language != language[:2]:
            logging.warning(
                'Extended language code %s not supported. Falling back on %s.',
                language, language[:2]
            )
    lang_id_to_string = {
        source_lang: babel.Locale(source_lang[:2]).english_name,
        target_lang: babel.Locale(target_lang[:2]).english_name,
    }
    src_str = 'translate {}'.format(lang_id_to_string[source_lang])
    tgt_str = ' to {}: '.format(lang_id_to_string[target_lang])
    prefix = src_str + tgt_str
else:
    prefix = ""
{% else %}
prefix = ""
{% endif %}
{% if 'mbart' in model_checkpoint %}

# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
    label = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
    source_code = [item for item in label if item.startswith(source_lang)][0]
    target_code = [item for item in label if item.startswith(target_lang)][0]
    if source_lang is not None:
        tokenizer.src_lang = source_code
    if target_lang is not None:
        tokenizer.tgt_lang = target_code
{% endif %}
max_input_length = {{ block_size }}
max_target_length = {{ block_size }}

def preprocess_function(examples):
    inputs = [prefix + ex[source_lang] for ex in examples["translation"]]
    targets = [ex[target_lang] for ex in examples["translation"]]
    model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)

    # Setup the tokenizer for targets
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(targets, max_length=max_target_length, truncation=True)

    model_inputs["labels"] = labels["input_ids"]
    return model_inputs


tokenized_datasets = datasets.map(preprocess_function, batched=True, num_proc=4, remove_columns=list(
    set(sum(list(datasets.column_names.values()), []))), desc="Running tokenizer on dataset")

data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
batch_size = {{ batch_size }}

{{ header("Training") }}

def compute_metrics(eval_preds):
    preds, labels = eval_preds
    # In case the model returns more than the prediction logits
    if isinstance(preds, tuple):
        preds = preds[0]

    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

    # Replace -100s in the labels as we can't decode them
    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    # Some simple post-processing
    decoded_preds = [pred.strip() for pred in decoded_preds]
    decoded_labels = [[label.strip()] for label in decoded_labels]

    result = metric.compute(predictions=decoded_preds,
                            references=decoded_labels)
    return {"bleu": result["score"]}


def postprocess(predictions, labels):
    predictions = predictions.cpu().numpy()
    labels = labels.cpu().numpy()

    decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)

    # Replace -100 in the labels as we can't decode them.
    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    # Some simple post-processing
    decoded_preds = [pred.strip() for pred in decoded_preds]
    decoded_labels = [[label.strip()] for label in decoded_labels]
    return decoded_preds, decoded_labels



training_args = Seq2SeqTrainingArguments(
    output_dir=f"{model_name}-finetuned",
    per_device_train_batch_size={{ batch_size }},
    per_device_eval_batch_size={{ batch_size }},
    evaluation_strategy='epoch',
    logging_strategy='epoch',
    save_strategy='epoch',
    optim='{{ optimizer }}',
    learning_rate={{ lr }},
    num_train_epochs={{ num_epochs }},
    gradient_accumulation_steps={{ gradient_accumulation_steps }},
    lr_scheduler_type='{{ lr_scheduler_type }}',
    warmup_steps={{ num_warmup_steps }},
    {% if use_weight_decay%}
    weight_decay={{ weight_decay }},
    {% endif %}
    push_to_hub=False,
    dataloader_num_workers=0,
    {% if task=="MaskedLM" %}
    {% if whole_word_masking %}
    remove_unused_columns=False,
    {% endif %}
    {% endif %}
    load_best_model_at_end=True,
    log_level='error' 
)

trainer = Seq2SeqTrainer(
    model=model,
    args=training_args,
    train_dataset=lm_datasets["{{ train }}"],
    eval_dataset=lm_datasets["{{ validation }}"],
    data_collator=data_collator,
)

train_result = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
eval_results = trainer.evaluate()
trainer.log_metrics("eval", eval_results)
trainer.save_metrics("eval", eval_results)