File size: 5,570 Bytes
5ca6388
b73bc76
5ca6388
 
 
b73bc76
5ca6388
 
b73bc76
 
5ca6388
9cbb2e3
 
 
 
 
c6018db
5ca6388
c6018db
9cbb2e3
b73bc76
 
 
 
 
 
 
 
 
 
 
 
5ca6388
9cbb2e3
 
5ca6388
c6018db
9cbb2e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3913f7
c6018db
b73bc76
 
 
 
 
 
 
 
 
 
 
 
c6018db
b73bc76
c6018db
 
 
e4e6dc4
c6018db
 
e4e6dc4
9cbb2e3
 
 
 
 
 
 
 
 
 
c6018db
 
 
 
 
b73bc76
 
 
 
 
 
 
 
 
 
 
 
c6018db
b73bc76
9cbb2e3
 
 
c6018db
 
 
9cbb2e3
 
 
 
 
 
 
c6018db
 
9cbb2e3
 
 
2987ac4
 
c6018db
2987ac4
9cbb2e3
5ca6388
 
 
 
f3913f7
5ca6388
9cbb2e3
5ca6388
9cbb2e3
5ca6388
 
f3913f7
c6018db
 
 
f3913f7
5ca6388
9cbb2e3
 
 
5ca6388
9cbb2e3
 
b73bc76
9cbb2e3
 
 
 
 
 
5ca6388
 
9cbb2e3
 
 
c6018db
 
f3913f7
5ca6388
9cbb2e3
5ca6388
c6018db
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import time
import gradio as gr
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.groq import Groq
from llama_parse import LlamaParse
import mixedbread_ai
from mixedbread_ai.core.api_error import ApiError

# API keys
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
groq_key = os.environ.get("GROQ_API_KEY")
mxbai_key = os.environ.get("MXBAI_API_KEY")
if not (llama_cloud_key and groq_key and mxbai_key):
    raise ValueError("API Keys not found! Ensure they are passed to the Docker container.")

# Model names
llm_model_name = "llama-3.1-70b-versatile"
embed_model_name = "mxbai-embed-large-v1"  # Mixedbread AI model
fallback_embed_model = "sentence-transformers/all-MiniLM-L6-v2"  # Fallback model

# Configure Mixedbread AI SDK
mixedbread_config = mixedbread_ai.Configuration(
    api_key=mxbai_key,
    retry_on=[503],  # Retry on 503 Service Unavailable
    max_retries=3,
    retry_delay=2.0,  # Seconds between retries
    timeout=30.0,  # Request timeout
)
mixedbread_client = mixedbread_ai.Client(configuration=mixedbread_config)

# Initialize the parser
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")

# Define file extractor
file_extractor = {
    ".pdf": parser,
    ".docx": parser,
    ".doc": parser,
    ".txt": parser,
    ".csv": parser,
    ".xlsx": parser,
    ".pptx": parser,
    ".html": parser,
    ".jpg": parser,
    ".jpeg": parser,
    ".png": parser,
    ".webp": parser,
    ".svg": parser,
}

# Initialize models with error handling
def initialize_embed_model():
    try:
        return MixedbreadAIEmbedding(
            api_key=mxbai_key,
            model_name=embed_model_name,
            mxbai_client=mixedbread_client,  # Use configured SDK client
        )
    except Exception as e:
        print(f"Failed to initialize Mixedbread AI embedding: {str(e)}")
        print("Falling back to local HuggingFace embedding model.")
        return HuggingFaceEmbedding(model_name=fallback_embed_model)

try:
    embed_model = initialize_embed_model()
    llm = Groq(model=llm_model_name, api_key=groq_key)
except Exception as e:
    raise RuntimeError(f"Failed to initialize models: {str(e)}")

# Global variable for vector index
vector_index = None

# File processing function
def load_files(file_path: str):
    global vector_index
    if not file_path:
        return "No file path provided. Please upload a file."
    
    valid_extensions = ', '.join(file_extractor.keys())
    if not any(file_path.endswith(ext) for ext in file_extractor):
        return f"The parser can only parse the following file types: {valid_extensions}"

    try:
        document = SimpleDirectoryReader(
            input_files=[file_path], 
            file_extractor=file_extractor
        ).load_data()
        
        try:
            vector_index = VectorStoreIndex.from_documents(
                document, 
                embed_model=embed_model
            )
            filename = os.path.basename(file_path)
            return f"Ready to provide responses based on: {filename}"
        except ApiError as e:
            return f"Error processing file with Mixedbread AI API: {str(e)}. Status code: {e.status_code}"
        except Exception as e:
            return f"Unexpected error processing file: {str(e)}"
    except Exception as e:
        return f"Error loading file: {str(e)}"

# Respond function
def respond(message, history):
    if not vector_index:
        return "Please upload a file first."
    
    try:
        query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
        streaming_response = query_engine.query(message)
        partial_text = ""
        for new_text in streaming_response.response_gen:
            partial_text += new_text
            yield partial_text
    except Exception as e:
        yield f"Error processing query: {str(e)}"

# Clear function
def clear_state():
    global vector_index
    vector_index = None
    return None, None, None

# UI Setup
with gr.Blocks(
    theme=gr.themes.Default(
        primary_hue="green",
        secondary_hue="blue",
        font=[gr.themes.GoogleFont("Poppins")],
    ),
    css="footer {visibility: hidden}",
) as demo:
    gr.Markdown("# DataCamp Doc Q&A πŸ€–πŸ“ƒ")
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(
                file_count="single", 
                type="filepath", 
                label="Upload Document"
            )
            with gr.Row():
                btn = gr.Button("Submit", variant="primary")
                clear = gr.Button("Clear")
            output = gr.Textbox(label="Status")
        with gr.Column(scale=3):
            chatbot = gr.ChatInterface(
                fn=respond,
                chatbot=gr.Chatbot(height=300, type="messages"),
                theme="soft",
                show_progress="full",
                textbox=gr.Textbox(
                    placeholder="Ask questions about the uploaded document!",
                    container=False,
                ),
            )

    # Set up Gradio interactions
    btn.click(fn=load_files, inputs=file_input, outputs=output)
    clear.click(
        fn=clear_state,
        outputs=[file_input, output, chatbot],
    )

# Launch the demo
if __name__ == "__main__":
    try:
        demo.launch()
    except Exception as e:
        print(f"Failed to launch application: {str(e)}")