Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,189 +1,130 @@
|
|
1 |
-
"""
|
2 |
-
Doc-Q&A app (Gradio 5.x + Llama-Index 0.12.x, June 2025)
|
3 |
-
|
4 |
-
Key upgrades
|
5 |
-
------------
|
6 |
-
βͺ Gradio 5.34βnew event system (`upload`, `clear` etc.)
|
7 |
-
βͺ Llama-Index 0.12.42β`VectorStoreIndex.from_documents` signature unchanged
|
8 |
-
βͺ MixedbreadAIEmbedding 0.3.0 β supports `batch_size`, `timeout`
|
9 |
-
βͺ Tenacity for exponential-back-off when MXBAI returns 5xx / rate limits
|
10 |
-
"""
|
11 |
-
|
12 |
-
from __future__ import annotations
|
13 |
-
|
14 |
import os
|
15 |
-
from pathlib import Path
|
16 |
-
from typing import List
|
17 |
|
18 |
import gradio as gr
|
19 |
-
from tenacity import retry, wait_exponential, stop_after_attempt
|
20 |
-
from mixedbread_ai.core.api_error import ApiError
|
21 |
-
|
22 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
23 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
24 |
from llama_index.llms.groq import Groq
|
25 |
from llama_parse import LlamaParse
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
if not all([LLAMA_CLOUD_API_KEY, GROQ_API_KEY, MXBAI_API_KEY]):
|
35 |
-
raise EnvironmentError(
|
36 |
-
"LLAMA_CLOUD_API_KEY, GROQ_API_KEY and MXBAI_API_KEY must be set in the env."
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
LLM_MODEL = "llama-3.1-70b-versatile" # Groqβs best for Q&A
|
43 |
-
EMBED_MODEL = "mixedbread-ai/mxbai-embed-large-v1" # 1024-dim
|
44 |
-
|
45 |
-
parser = LlamaParse(api_key=LLAMA_CLOUD_API_KEY, result_type="markdown")
|
46 |
-
|
47 |
-
SUPPORTED_EXTS = (
|
48 |
-
".pdf", ".docx", ".doc", ".txt", ".csv", ".xlsx",
|
49 |
-
".pptx", ".html", ".jpg", ".jpeg", ".png", ".webp", ".svg",
|
50 |
-
)
|
51 |
-
file_extractor = {ext: parser for ext in SUPPORTED_EXTS}
|
52 |
-
|
53 |
-
embed_model = MixedbreadAIEmbedding(
|
54 |
-
api_key = MXBAI_API_KEY,
|
55 |
-
model_name = EMBED_MODEL,
|
56 |
-
batch_size = 8, # keep requests < 100 KB
|
57 |
-
timeout = 60, # generous server-side processing window
|
58 |
-
)
|
59 |
-
|
60 |
-
llm = Groq(model=LLM_MODEL, api_key=GROQ_API_KEY)
|
61 |
-
|
62 |
-
# A simple global cache (could be swapped for Redis, etc.)
|
63 |
-
vector_index: VectorStoreIndex | None = None
|
64 |
-
|
65 |
-
|
66 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
67 |
-
# 3. Helper wrappers
|
68 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
69 |
-
@retry(
|
70 |
-
wait=wait_exponential(multiplier=2, min=4, max=32),
|
71 |
-
stop=stop_after_attempt(4),
|
72 |
-
retry_error_callback=lambda retry_state: None, # bubble up as None
|
73 |
-
reraise=False,
|
74 |
-
)
|
75 |
-
def _safe_build_index(docs) -> VectorStoreIndex | None:
|
76 |
-
"""Retry MXBAI 503 / 429 transparently."""
|
77 |
-
try:
|
78 |
-
return VectorStoreIndex.from_documents(docs, embed_model=embed_model)
|
79 |
-
except ApiError as e:
|
80 |
-
# Tenacity will catch and retry unless non-5xx / non-429
|
81 |
-
if e.status_code not in (429, 500, 502, 503, 504):
|
82 |
-
raise
|
83 |
-
raise # trigger retry
|
84 |
-
|
85 |
-
|
86 |
-
def load_files(file: Path | None) -> str:
|
87 |
-
"""Parse uploaded file and build vector index (with retries)."""
|
88 |
-
global vector_index
|
89 |
-
if file is None:
|
90 |
-
return "β οΈ No file selected."
|
91 |
-
|
92 |
-
if file.suffix.lower() not in SUPPORTED_EXTS:
|
93 |
-
allow = ", ".join(SUPPORTED_EXTS)
|
94 |
-
return f"β οΈ Unsupported file type. Allowed: {allow}"
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
file_extractor=file_extractor,
|
99 |
-
).load_data()
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
|
|
108 |
|
109 |
-
|
110 |
-
"""Stream answer chunks to the Chatbot."""
|
111 |
-
if vector_index is None:
|
112 |
-
yield "β‘οΈ Please upload a document first."
|
113 |
-
return
|
114 |
|
115 |
-
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
116 |
-
response = query_engine.query(message)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
global vector_index
|
127 |
vector_index = None
|
128 |
-
return None,
|
129 |
|
130 |
|
131 |
-
#
|
132 |
-
# 4. Gradio UI (5.x syntax)
|
133 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
134 |
with gr.Blocks(
|
135 |
theme=gr.themes.Default(
|
136 |
primary_hue="green",
|
137 |
secondary_hue="blue",
|
138 |
font=[gr.themes.GoogleFont("Poppins")],
|
139 |
),
|
140 |
-
css="footer {visibility:hidden}",
|
141 |
) as demo:
|
142 |
-
|
143 |
-
gr.Markdown("<h1 style='text-align:center'>DataCamp Doc Q&A π€π</h1>")
|
144 |
-
|
145 |
with gr.Row():
|
146 |
with gr.Column(scale=1):
|
147 |
file_input = gr.File(
|
148 |
-
label="Upload
|
149 |
-
file_count="single",
|
150 |
-
type="filepath",
|
151 |
-
show_label=True,
|
152 |
)
|
153 |
-
status_md = gr.Markdown()
|
154 |
with gr.Row():
|
155 |
-
|
156 |
-
|
|
|
157 |
with gr.Column(scale=3):
|
158 |
-
chatbot = gr.
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
)
|
164 |
-
send_btn = gr.Button("Send", variant="primary")
|
165 |
|
166 |
-
#
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
outputs=
|
171 |
-
)
|
172 |
-
send_btn.click(
|
173 |
-
fn=respond,
|
174 |
-
inputs=[txt_box, chatbot],
|
175 |
-
outputs=chatbot,
|
176 |
)
|
177 |
-
clear_btn.click(
|
178 |
-
fn=clear,
|
179 |
-
outputs=[file_input, status_md, chatbot],
|
180 |
-
)
|
181 |
-
|
182 |
-
# optional: disable public OpenAPI schema (old crash guard)
|
183 |
-
demo.queue(api_open=False)
|
184 |
|
185 |
-
#
|
186 |
-
# 5. Launch
|
187 |
-
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
188 |
if __name__ == "__main__":
|
189 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
5 |
from llama_index.embeddings.mixedbreadai import MixedbreadAIEmbedding
|
6 |
from llama_index.llms.groq import Groq
|
7 |
from llama_parse import LlamaParse
|
8 |
|
9 |
+
# API keys
|
10 |
+
llama_cloud_key = os.environ.get("LLAMA_CLOUD_API_KEY")
|
11 |
+
groq_key = os.environ.get("GROQ_API_KEY")
|
12 |
+
mxbai_key = os.environ.get("MXBAI_API_KEY")
|
13 |
+
if not (llama_cloud_key and groq_key and mxbai_key):
|
14 |
+
raise ValueError(
|
15 |
+
"API Keys not found! Ensure they are passed to the Docker container."
|
|
|
|
|
|
|
16 |
)
|
17 |
|
18 |
+
# models name
|
19 |
+
llm_model_name = "llama-3.1-70b-versatile"
|
20 |
+
embed_model_name = "mixedbread-ai/mxbai-embed-large-v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Initialize the parser
|
23 |
+
parser = LlamaParse(api_key=llama_cloud_key, result_type="markdown")
|
|
|
|
|
24 |
|
25 |
+
# Define file extractor with various common extensions
|
26 |
+
file_extractor = {
|
27 |
+
".pdf": parser,
|
28 |
+
".docx": parser,
|
29 |
+
".doc": parser,
|
30 |
+
".txt": parser,
|
31 |
+
".csv": parser,
|
32 |
+
".xlsx": parser,
|
33 |
+
".pptx": parser,
|
34 |
+
".html": parser,
|
35 |
+
".jpg": parser,
|
36 |
+
".jpeg": parser,
|
37 |
+
".png": parser,
|
38 |
+
".webp": parser,
|
39 |
+
".svg": parser,
|
40 |
+
}
|
41 |
|
42 |
+
# Initialize the embedding model
|
43 |
+
embed_model = MixedbreadAIEmbedding(api_key=mxbai_key, model_name=embed_model_name)
|
44 |
|
45 |
+
# Initialize the LLM
|
46 |
|
47 |
+
llm = Groq(model="llama-3.1-70b-versatile", api_key=groq_key)
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
49 |
|
50 |
+
# File processing function
|
51 |
+
def load_files(file_path: str):
|
52 |
+
global vector_index
|
53 |
+
if not file_path:
|
54 |
+
return "No file path provided. Please upload a file."
|
55 |
+
|
56 |
+
valid_extensions = ', '.join(file_extractor.keys())
|
57 |
+
if not any(file_path.endswith(ext) for ext in file_extractor):
|
58 |
+
return f"The parser can only parse the following file types: {valid_extensions}"
|
59 |
+
|
60 |
+
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
|
61 |
+
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
|
62 |
+
print(f"Parsing completed for: {file_path}")
|
63 |
+
filename = os.path.basename(file_path)
|
64 |
+
return f"Ready to provide responses based on: {filename}"
|
65 |
+
|
66 |
+
|
67 |
+
# Respond function
|
68 |
+
def respond(message, history):
|
69 |
+
try:
|
70 |
+
# Use the preloaded LLM
|
71 |
+
query_engine = vector_index.as_query_engine(streaming=True, llm=llm)
|
72 |
+
streaming_response = query_engine.query(message)
|
73 |
+
partial_text = ""
|
74 |
+
for new_text in streaming_response.response_gen:
|
75 |
+
partial_text += new_text
|
76 |
+
# Yield an empty string to cleanup the message textbox and the updated conversation history
|
77 |
+
yield partial_text
|
78 |
+
except (AttributeError, NameError):
|
79 |
+
print("An error occurred while processing your request.")
|
80 |
+
yield "Please upload the file to begin chat."
|
81 |
+
|
82 |
+
|
83 |
+
# Clear function
|
84 |
+
def clear_state():
|
85 |
global vector_index
|
86 |
vector_index = None
|
87 |
+
return [None, None, None]
|
88 |
|
89 |
|
90 |
+
# UI Setup
|
|
|
|
|
91 |
with gr.Blocks(
|
92 |
theme=gr.themes.Default(
|
93 |
primary_hue="green",
|
94 |
secondary_hue="blue",
|
95 |
font=[gr.themes.GoogleFont("Poppins")],
|
96 |
),
|
97 |
+
css="footer {visibility: hidden}",
|
98 |
) as demo:
|
99 |
+
gr.Markdown("# DataCamp Doc Q&A π€π")
|
|
|
|
|
100 |
with gr.Row():
|
101 |
with gr.Column(scale=1):
|
102 |
file_input = gr.File(
|
103 |
+
file_count="single", type="filepath", label="Upload Document"
|
|
|
|
|
|
|
104 |
)
|
|
|
105 |
with gr.Row():
|
106 |
+
btn = gr.Button("Submit", variant="primary")
|
107 |
+
clear = gr.Button("Clear")
|
108 |
+
output = gr.Textbox(label="Status")
|
109 |
with gr.Column(scale=3):
|
110 |
+
chatbot = gr.ChatInterface(
|
111 |
+
fn=respond,
|
112 |
+
chatbot=gr.Chatbot(height=300),
|
113 |
+
theme="soft",
|
114 |
+
show_progress="full",
|
115 |
+
textbox=gr.Textbox(
|
116 |
+
placeholder="Ask questions about the uploaded document!",
|
117 |
+
container=False,
|
118 |
+
),
|
119 |
)
|
|
|
120 |
|
121 |
+
# Set up Gradio interactions
|
122 |
+
btn.click(fn=load_files, inputs=file_input, outputs=output)
|
123 |
+
clear.click(
|
124 |
+
fn=clear_state, # Use the clear_state function
|
125 |
+
outputs=[file_input, output],
|
|
|
|
|
|
|
|
|
|
|
126 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
# Launch the demo
|
|
|
|
|
129 |
if __name__ == "__main__":
|
130 |
+
demo.launch()
|