Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import torch
|
|
9 |
# 假设openai_client已定义,例如:
|
10 |
|
11 |
device = "cuda"
|
12 |
-
MODEL_NAME = "
|
13 |
|
14 |
print("Start dowload")
|
15 |
def load_model():
|
@@ -47,18 +47,6 @@ def _translate(text: str):
|
|
47 |
print(full_output)
|
48 |
return full_output
|
49 |
|
50 |
-
# def _translate(text: str, src_lang: str, tgt_lang: str):
|
51 |
-
# prompt = f"Translate the following text from {src_lang} to {tgt_lang}. Direct output translation result without any explaination:\n\n{text}"
|
52 |
-
# key=os.getenv('key')
|
53 |
-
# openai_client = openai.OpenAI(base_url="https://ssapi.cppbear.site/v1", api_key=key)
|
54 |
-
# response = openai_client.chat.completions.create(
|
55 |
-
# model="tbai.xin-dpsk-deepseek-v3", # 如gpt-3.5-turbo或其他兼容模型
|
56 |
-
# messages=[{"role": "user", "content": prompt}],
|
57 |
-
# max_tokens=30240,
|
58 |
-
# temperature=0.0
|
59 |
-
# )
|
60 |
-
# print(response)
|
61 |
-
# return response.choices[0].message.content.strip()
|
62 |
|
63 |
|
64 |
description = """
|
@@ -69,7 +57,7 @@ description = """
|
|
69 |
Seed-X, a powerful series of open-source multilingual translation language models, including an instruction model, a reinforcement learning model, and a reward model. It pushes the boundaries of translation capabilities within 7 billion parameters. We develop Seed-X as an accessible, off-the-shelf tool to support the community in advancing translation research and applications:
|
70 |
"""
|
71 |
|
72 |
-
examples_inputs = [["
|
73 |
|
74 |
with gr.Blocks() as demo:
|
75 |
gr.Markdown(description)
|
|
|
9 |
# 假设openai_client已定义,例如:
|
10 |
|
11 |
device = "cuda"
|
12 |
+
MODEL_NAME = "kevinpro/R-PRM-7B-DPO"
|
13 |
|
14 |
print("Start dowload")
|
15 |
def load_model():
|
|
|
47 |
print(full_output)
|
48 |
return full_output
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
description = """
|
|
|
57 |
Seed-X, a powerful series of open-source multilingual translation language models, including an instruction model, a reinforcement learning model, and a reward model. It pushes the boundaries of translation capabilities within 7 billion parameters. We develop Seed-X as an accessible, off-the-shelf tool to support the community in advancing translation research and applications:
|
58 |
"""
|
59 |
|
60 |
+
examples_inputs = [["test"]]
|
61 |
|
62 |
with gr.Blocks() as demo:
|
63 |
gr.Markdown(description)
|