kevinpro commited on
Commit
f0def04
·
verified ·
1 Parent(s): 7be16c8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -1,20 +1,17 @@
1
  import gradio as gr
2
  from functools import lru_cache
3
- import openai # 用于调用外部API
4
  import os
5
  import spaces
6
  import gradio as gr
7
  from transformers import AutoTokenizer, AutoModel,AutoModelForCausalLM
8
- import platform
9
  import torch
10
- import nltk
11
- from functools import lru_cache
12
 
13
  # 假设openai_client已定义,例如:
14
 
15
  device = "cuda"
16
  MODEL_NAME = "ByteDance-Seed/Seed-X-PPO-7B"
17
 
 
18
  def load_model():
19
  model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,torch_dtype="bfloat16").to(device)
20
  print(f"Model loaded in {device}")
@@ -22,7 +19,7 @@ def load_model():
22
 
23
 
24
  model = load_model()
25
-
26
  # Loading the tokenizer once, because re-loading it takes about 1.5 seconds each time
27
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
28
 
@@ -88,4 +85,6 @@ with gr.Blocks() as demo:
88
  outputs=output,
89
  )
90
  examples = gr.Examples(examples=examples_inputs,inputs=[input_text], fn=translate, outputs=output, cache_examples=True)
 
 
91
  demo.launch()
 
1
  import gradio as gr
2
  from functools import lru_cache
 
3
  import os
4
  import spaces
5
  import gradio as gr
6
  from transformers import AutoTokenizer, AutoModel,AutoModelForCausalLM
 
7
  import torch
 
 
8
 
9
  # 假设openai_client已定义,例如:
10
 
11
  device = "cuda"
12
  MODEL_NAME = "ByteDance-Seed/Seed-X-PPO-7B"
13
 
14
+ print("Start dowload")
15
  def load_model():
16
  model = AutoModelForCausalLM.from_pretrained(MODEL_NAME,torch_dtype="bfloat16").to(device)
17
  print(f"Model loaded in {device}")
 
19
 
20
 
21
  model = load_model()
22
+ print("Ednd dowload")
23
  # Loading the tokenizer once, because re-loading it takes about 1.5 seconds each time
24
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
25
 
 
85
  outputs=output,
86
  )
87
  examples = gr.Examples(examples=examples_inputs,inputs=[input_text], fn=translate, outputs=output, cache_examples=True)
88
+
89
+ print("Prepared")
90
  demo.launch()