AkashicPulse / app.py
kayfahaarukku's picture
Update app.py
5272b56 verified
raw
history blame
6.85 kB
import os
import spaces
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
from huggingface_hub import hf_hub_download
from transformers import CLIPTextModel, CLIPTokenizer
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
# Load the model from safetensors file
def load_model():
model_path = hf_hub_download(
repo_id="kayfahaarukku/AkashicPulse-v1.0",
filename="AkashicPulse-v1.0-ft-ft.safetensors"
)
# Initialize tokenizer and text encoder from standard SD 1.5
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
# Initialize pipeline with text encoder and tokenizer
pipe = StableDiffusionPipeline.from_single_file(
model_path,
torch_dtype=torch.float16,
use_safetensors=True,
tokenizer=tokenizer,
text_encoder=text_encoder,
requires_safety_checker=False,
safety_checker=None
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
return pipe
# Load the pipeline
pipe = load_model()
# Function to generate an image
@spaces.GPU
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
pipe.to('cuda')
if randomize_seed:
seed = random.randint(0, 99999999)
if use_defaults:
prompt = f"{prompt}, masterpiece, best quality"
negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, signature, watermark, username, blurry, {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / num_inference_steps)
return
width, height = map(int, resolution.split('x'))
# Add empty dict for additional kwargs
added_cond_kwargs = {"text_embeds": None, "time_ids": None}
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1,
added_cond_kwargs=added_cond_kwargs
).images[0]
torch.cuda.empty_cache()
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
return image, seed, metadata_text
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
try:
image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
return image, seed, gr.update(value=metadata_text)
except Exception as e:
print(f"Error generating image: {str(e)}")
raise e
def reset_inputs():
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')
with gr.Blocks(title="AkashicPulse v1.0 Demo", theme="NoCrypt/[email protected]") as demo:
gr.HTML(
"<h1>AkashicPulse v1.0 Demo</h1>"
"This demo showcases the AkashicPulse v1.0 model capabilities. For best results, it's recommended to run the model in Stable Diffusion WebUI or ComfyUI with MaHiRo CFG enabled."
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=4, maximum=10, step=0.5, label="Guidance Scale (CFG)", value=7)
num_inference_steps_input = gr.Slider(minimum=20, maximum=30, step=1, label="Number of Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Parameters", open=False):
gr.Markdown(
"""
This parameter is compatible with Stable Diffusion WebUI's parameter importer.
"""
)
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, series, by artist name, the rest of the prompt, masterpiece, best quality`
**PS:** `masterpiece, best quality` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Current settings (recommended):
- Sampler: Euler a (fixed)
- Steps: 20-30 (sweet spot: 28)
- CFG: 4-10 (sweet spot: 7)
- Optional: Enable MaHiRo CFG in reForge or ComfyUI
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image, seed_input, metadata_textbox]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
]
)
demo.queue(max_size=20).launch(share=False)