File size: 6,853 Bytes
226a7b7
1885732
b45db27
48a4b4e
b45db27
 
 
56c8d0a
5272b56
5850fbf
b45db27
 
 
56c8d0a
 
 
 
 
 
 
5272b56
 
 
 
 
48a4b4e
 
56c8d0a
5272b56
 
 
 
 
56c8d0a
 
 
 
 
 
 
b45db27
 
56c8d0a
c9c788f
56c8d0a
b45db27
 
 
 
56c8d0a
 
b45db27
 
 
 
 
 
c9c788f
5272b56
 
 
 
b45db27
 
 
 
 
 
 
 
 
5272b56
 
b45db27
 
 
 
7185cf4
79937ec
 
b45db27
 
c9c788f
5272b56
 
 
 
 
 
b45db27
 
56c8d0a
b45db27
56c8d0a
b45db27
56c8d0a
 
 
b45db27
 
 
2efc5d6
b45db27
c9c788f
 
 
 
 
 
f23fc7b
c9c788f
56c8d0a
 
d00ca06
7e3e351
b45db27
 
 
 
2c40df6
2cada81
 
 
 
 
 
 
79dca31
 
 
56c8d0a
87d81cd
56c8d0a
87d81cd
56c8d0a
 
 
 
 
79dca31
 
b45db27
 
 
 
c9c788f
b45db27
79937ec
b45db27
 
 
 
 
 
79937ec
b45db27
 
 
7185cf4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import spaces
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
from huggingface_hub import hf_hub_download
from transformers import CLIPTextModel, CLIPTokenizer

# Enable TQDM progress tracking
tqdm.monitor_interval = 0

# Load the model from safetensors file
def load_model():
    model_path = hf_hub_download(
        repo_id="kayfahaarukku/AkashicPulse-v1.0",
        filename="AkashicPulse-v1.0-ft-ft.safetensors"
    )
    
    # Initialize tokenizer and text encoder from standard SD 1.5
    tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
    
    # Initialize pipeline with text encoder and tokenizer
    pipe = StableDiffusionPipeline.from_single_file(
        model_path,
        torch_dtype=torch.float16,
        use_safetensors=True,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        requires_safety_checker=False,
        safety_checker=None
    )
    
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    return pipe

# Load the pipeline
pipe = load_model()

# Function to generate an image
@spaces.GPU
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    pipe.to('cuda')
    
    if randomize_seed:
        seed = random.randint(0, 99999999)
    if use_defaults:
        prompt = f"{prompt}, masterpiece, best quality"
        negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, signature, watermark, username, blurry, {negative_prompt}"
    generator = torch.manual_seed(seed)
    
    def callback(step, timestep, latents):
        progress(step / num_inference_steps)
        return
    
    width, height = map(int, resolution.split('x'))
    
    # Add empty dict for additional kwargs
    added_cond_kwargs = {"text_embeds": None, "time_ids": None}
    
    image = pipe(
        prompt, 
        negative_prompt=negative_prompt,
        width=width,
        height=height, 
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        generator=generator,
        callback=callback,
        callback_steps=1,
        added_cond_kwargs=added_cond_kwargs
    ).images[0]

    torch.cuda.empty_cache()

    metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"

    return image, seed, metadata_text

# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
    try:
        image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
        return image, seed, gr.update(value=metadata_text)
    except Exception as e:
        print(f"Error generating image: {str(e)}")
        raise e

def reset_inputs():
    return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')

with gr.Blocks(title="AkashicPulse v1.0 Demo", theme="NoCrypt/[email protected]") as demo:
    gr.HTML(
        "<h1>AkashicPulse v1.0 Demo</h1>"
        "This demo showcases the AkashicPulse v1.0 model capabilities. For best results, it's recommended to run the model in Stable Diffusion WebUI or ComfyUI with MaHiRo CFG enabled."
    )
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
            negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
            use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
            resolution_input = gr.Radio(
                choices=[
                    "1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
                    "1344x768", "768x1344", "1536x640", "640x1536"
                ],
                label="Resolution",
                value="832x1216"
            )
            guidance_scale_input = gr.Slider(minimum=4, maximum=10, step=0.5, label="Guidance Scale (CFG)", value=7)
            num_inference_steps_input = gr.Slider(minimum=20, maximum=30, step=1, label="Number of Steps", value=28)
            seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
            randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
            generate_button = gr.Button("Generate")
            reset_button = gr.Button("Reset")

        with gr.Column():
            output_image = gr.Image(type="pil", label="Generated Image")
            with gr.Accordion("Parameters", open=False):
                gr.Markdown(
                    """
                    This parameter is compatible with Stable Diffusion WebUI's parameter importer.
                    """
                )
                metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
            gr.Markdown(
                """
                ### Recommended prompt formatting:
                `1girl/1boy, character name, series, by artist name, the rest of the prompt, masterpiece, best quality`

                **PS:** `masterpiece, best quality` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled

                ### Current settings (recommended):
                - Sampler: Euler a (fixed)
                - Steps: 20-30 (sweet spot: 28)
                - CFG: 4-10 (sweet spot: 7)
                - Optional: Enable MaHiRo CFG in reForge or ComfyUI
                """
            )

    generate_button.click(
        interface_fn,
        inputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
        ],
        outputs=[output_image, seed_input, metadata_textbox]
    )
    
    reset_button.click(
        reset_inputs,
        inputs=[],
        outputs=[
            prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
        ]
    )

demo.queue(max_size=20).launch(share=False)