Spaces:
Runtime error
Runtime error
File size: 6,853 Bytes
226a7b7 1885732 b45db27 48a4b4e b45db27 56c8d0a 5272b56 5850fbf b45db27 56c8d0a 5272b56 48a4b4e 56c8d0a 5272b56 56c8d0a b45db27 56c8d0a c9c788f 56c8d0a b45db27 56c8d0a b45db27 c9c788f 5272b56 b45db27 5272b56 b45db27 7185cf4 79937ec b45db27 c9c788f 5272b56 b45db27 56c8d0a b45db27 56c8d0a b45db27 56c8d0a b45db27 2efc5d6 b45db27 c9c788f f23fc7b c9c788f 56c8d0a d00ca06 7e3e351 b45db27 2c40df6 2cada81 79dca31 56c8d0a 87d81cd 56c8d0a 87d81cd 56c8d0a 79dca31 b45db27 c9c788f b45db27 79937ec b45db27 79937ec b45db27 7185cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import spaces
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
import gradio as gr
import random
import tqdm
from huggingface_hub import hf_hub_download
from transformers import CLIPTextModel, CLIPTokenizer
# Enable TQDM progress tracking
tqdm.monitor_interval = 0
# Load the model from safetensors file
def load_model():
model_path = hf_hub_download(
repo_id="kayfahaarukku/AkashicPulse-v1.0",
filename="AkashicPulse-v1.0-ft-ft.safetensors"
)
# Initialize tokenizer and text encoder from standard SD 1.5
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
# Initialize pipeline with text encoder and tokenizer
pipe = StableDiffusionPipeline.from_single_file(
model_path,
torch_dtype=torch.float16,
use_safetensors=True,
tokenizer=tokenizer,
text_encoder=text_encoder,
requires_safety_checker=False,
safety_checker=None
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
return pipe
# Load the pipeline
pipe = load_model()
# Function to generate an image
@spaces.GPU
def generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
pipe.to('cuda')
if randomize_seed:
seed = random.randint(0, 99999999)
if use_defaults:
prompt = f"{prompt}, masterpiece, best quality"
negative_prompt = f"lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, signature, watermark, username, blurry, {negative_prompt}"
generator = torch.manual_seed(seed)
def callback(step, timestep, latents):
progress(step / num_inference_steps)
return
width, height = map(int, resolution.split('x'))
# Add empty dict for additional kwargs
added_cond_kwargs = {"text_embeds": None, "time_ids": None}
image = pipe(
prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
callback=callback,
callback_steps=1,
added_cond_kwargs=added_cond_kwargs
).images[0]
torch.cuda.empty_cache()
metadata_text = f"{prompt}\nNegative prompt: {negative_prompt}\nSteps: {num_inference_steps}, Sampler: Euler a, Size: {width}x{height}, Seed: {seed}, CFG scale: {guidance_scale}"
return image, seed, metadata_text
# Define Gradio interface
def interface_fn(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress=gr.Progress()):
try:
image, seed, metadata_text = generate_image(prompt, negative_prompt, use_defaults, resolution, guidance_scale, num_inference_steps, seed, randomize_seed, progress)
return image, seed, gr.update(value=metadata_text)
except Exception as e:
print(f"Error generating image: {str(e)}")
raise e
def reset_inputs():
return gr.update(value=''), gr.update(value=''), gr.update(value=True), gr.update(value='832x1216'), gr.update(value=7), gr.update(value=28), gr.update(value=0), gr.update(value=True), gr.update(value='')
with gr.Blocks(title="AkashicPulse v1.0 Demo", theme="NoCrypt/[email protected]") as demo:
gr.HTML(
"<h1>AkashicPulse v1.0 Demo</h1>"
"This demo showcases the AkashicPulse v1.0 model capabilities. For best results, it's recommended to run the model in Stable Diffusion WebUI or ComfyUI with MaHiRo CFG enabled."
)
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(lines=2, placeholder="Enter prompt here", label="Prompt")
negative_prompt_input = gr.Textbox(lines=2, placeholder="Enter negative prompt here", label="Negative Prompt")
use_defaults_input = gr.Checkbox(label="Use Default Quality Tags and Negative Prompt", value=True)
resolution_input = gr.Radio(
choices=[
"1024x1024", "1152x896", "896x1152", "1216x832", "832x1216",
"1344x768", "768x1344", "1536x640", "640x1536"
],
label="Resolution",
value="832x1216"
)
guidance_scale_input = gr.Slider(minimum=4, maximum=10, step=0.5, label="Guidance Scale (CFG)", value=7)
num_inference_steps_input = gr.Slider(minimum=20, maximum=30, step=1, label="Number of Steps", value=28)
seed_input = gr.Slider(minimum=0, maximum=999999999, step=1, label="Seed", value=0, interactive=True)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
generate_button = gr.Button("Generate")
reset_button = gr.Button("Reset")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Image")
with gr.Accordion("Parameters", open=False):
gr.Markdown(
"""
This parameter is compatible with Stable Diffusion WebUI's parameter importer.
"""
)
metadata_textbox = gr.Textbox(lines=6, label="Image Parameters", interactive=False, max_lines=6)
gr.Markdown(
"""
### Recommended prompt formatting:
`1girl/1boy, character name, series, by artist name, the rest of the prompt, masterpiece, best quality`
**PS:** `masterpiece, best quality` is automatically added when "Use Default Quality Tags and Negative Prompt" is enabled
### Current settings (recommended):
- Sampler: Euler a (fixed)
- Steps: 20-30 (sweet spot: 28)
- CFG: 4-10 (sweet spot: 7)
- Optional: Enable MaHiRo CFG in reForge or ComfyUI
"""
)
generate_button.click(
interface_fn,
inputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input
],
outputs=[output_image, seed_input, metadata_textbox]
)
reset_button.click(
reset_inputs,
inputs=[],
outputs=[
prompt_input, negative_prompt_input, use_defaults_input, resolution_input, guidance_scale_input, num_inference_steps_input, seed_input, randomize_seed_input, metadata_textbox
]
)
demo.queue(max_size=20).launch(share=False) |