File size: 100,423 Bytes
e39248e bda405a e39248e bda405a e39248e bda405a e39248e 4341d67 bda405a e39248e bda405a e39248e d3f8a88 f6e2ee7 e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e f6e2ee7 e39248e bda405a e39248e f6e2ee7 e39248e bda405a f6e2ee7 e39248e f6e2ee7 e39248e bda405a f6e2ee7 e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a f6e2ee7 d3f8a88 e39248e bda405a f6e2ee7 e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e f6e2ee7 e39248e d3f8a88 e39248e bda405a e39248e bda405a e39248e d3f8a88 e39248e bda405a e39248e bda405a e39248e d3f8a88 e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e f6e2ee7 e39248e ea4aa2a f6e2ee7 e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a e39248e bda405a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 |
import streamlit as st
import os
import re
import tempfile
import logging
import time
import base64
import json
from typing import List, Dict, Any, Union, Optional, Tuple
from dotenv import load_dotenv
import io
# Document processing libraries
from docx import Document
from docx.shared import Inches, Pt
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.enum.style import WD_STYLE_TYPE
import PyPDF2
from pptx import Presentation
import docx2txt
from docx.oxml import OxmlElement
from docx.oxml.ns import qn
# CrewAI imports
from crewai import Agent, Task, Crew, Process, LLM
from crewai.tasks import TaskOutput
from crewai.tools import BaseTool, tool
from pydantic import BaseModel, Field
import litellm
from langchain.tools import Tool
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Set page configuration
st.set_page_config(
page_title="Document Analysis Suite",
page_icon="π",
layout="wide"
)
# Initialize session state variables
if 'active_tab' not in st.session_state:
st.session_state.active_tab = "Document Analysis"
if 'uploaded_files' not in st.session_state:
st.session_state.uploaded_files = None
if 'extracted_text' not in st.session_state:
st.session_state.extracted_text = ""
if 'first_file_text' not in st.session_state:
st.session_state.first_file_text = ""
if 'breakdown_generated' not in st.session_state:
st.session_state.breakdown_generated = False
if 'teaching_plan_generated' not in st.session_state:
st.session_state.teaching_plan_generated = False
if 'board_plan_generated' not in st.session_state:
st.session_state.board_plan_generated = False
if 'content_type' not in st.session_state:
st.session_state.content_type = {"type": "Unknown", "confidence": "Low", "indicators": []}
# Load environment variables
#load_dotenv()
# Set the app title based on content type
def get_app_title(content_type):
if content_type == "Case Study":
return "π Case Study Analysis Suite"
elif content_type == "Scientific Article":
return "π¬ Scientific Article Analysis Suite"
elif content_type == "News Item":
return "π° News Item Analysis Suite"
else:
return "π Document Analysis Suite"
# Page title and description
st.title(get_app_title(st.session_state.content_type["type"]))
st.subheader("Generate comprehensive Teaching Notes, Teaching Plans, and Discussion Frameworks")
st.write("Developed for BIA 568 (Business Intelligence and Analytics) -- Management of A.I. at Stevens Institute of Technology")
st.write("---")
# Sidebar for API key configuration
with st.sidebar:
st.title("βοΈ Configuration")
api_key = st.text_input("Enter your Gemini API Key", type="password",
help="Required for the AI model to function")
if api_key:
os.environ["GEMINI_API_KEY"] = api_key
os.environ["GOOGLE_API_KEY"] = api_key
os.environ["LITELLM_MODEL_DEFAULT_PROVIDER"] = "gemini"
# Configure litellm
litellm.set_verbose = True
litellm_config = {
"model": "gemini/gemini-2.0-flash",
"api_key": api_key,
"provider": "gemini"
}
st.divider()
# Reset button
if st.button("π Reset Session", use_container_width=True):
for key in list(st.session_state.keys()):
del st.session_state[key]
st.rerun()
#---------------------------- Utility Functions ----------------------------#
def extract_text_from_pdf(file):
"""Extract text content from PDF file"""
if isinstance(file, bytes):
file = io.BytesIO(file)
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
def extract_text_from_docx(file):
"""Extract text content from DOCX file"""
if isinstance(file, bytes):
file = io.BytesIO(file)
return docx2txt.process(file)
def extract_text_from_pptx(file):
"""Extract text content from PPTX file"""
if isinstance(file, bytes):
file = io.BytesIO(file)
prs = Presentation(file)
text = ""
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
def extract_text_from_any_file(file):
"""Extract text based on file type"""
if file.name.endswith('.pdf'):
return extract_text_from_pdf(file)
elif file.name.endswith('.docx'):
return extract_text_from_docx(file)
elif file.name.endswith(('.pptx', '.ppt')):
return extract_text_from_pptx(file)
else:
return "Unsupported file format"
def create_download_link(content, filename):
"""Create a download link for text content"""
b64 = base64.b64encode(content.encode()).decode()
href = f'<a href="data:text/plain;base64,{b64}" download="{filename}" class="download-button">Download {filename}</a>'
return href
def create_docx_from_markdown(markdown_content, title, document_type):
"""Convert markdown content to a formatted DOCX file"""
# Create new document
doc = Document()
# Add title
title_paragraph = doc.add_paragraph()
title_paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
title_run = title_paragraph.add_run(title)
title_run.font.size = Pt(16)
title_run.bold = True
# Add document type
type_paragraph = doc.add_paragraph()
type_paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
type_run = type_paragraph.add_run(f"Document Type: {document_type}")
type_run.font.size = Pt(12)
type_run.italic = True
# Add separator
doc.add_paragraph("_" * 50)
# Process markdown content
lines = markdown_content.split('\n')
current_section = None
for line in lines:
# Handle headers
if line.startswith('# '):
p = doc.add_heading(line[2:], level=1)
current_section = line[2:]
elif line.startswith('## '):
p = doc.add_heading(line[3:], level=2)
current_section = line[3:]
elif line.startswith('### '):
p = doc.add_heading(line[4:], level=3)
# Handle bullet points
elif line.startswith('* '):
p = doc.add_paragraph()
p.style = 'List Bullet'
p.add_run(line[2:])
# Handle numbered lists
elif re.match(r'^\d+\. ', line):
p = doc.add_paragraph()
p.style = 'List Number'
p.add_run(re.sub(r'^\d+\. ', '', line))
# Regular paragraph
elif line.strip():
p = doc.add_paragraph(line)
# Save to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as tmp_file:
doc.save(tmp_file.name)
return tmp_file.name
#---------------------------- Content Type Detector ----------------------------#
class ContentTypeDetector:
def __init__(self, api_key):
self.api_key = api_key
self.llm = LLM(
model='gemini/gemini-2.0-flash',
api_key=self.api_key,
provider="gemini"
)
def create_detector_agent(self):
return Agent(
role="Content Type Analyzer",
goal="Determine the type of document from its content",
backstory="""You are an expert in content analysis, capable of
identifying different types of documents based on their structure,
language, and content. You can distinguish between case studies,
scientific articles, news items, and other content types with high accuracy.""",
llm=self.llm,
verbose=True
)
def detect_content_type(self, text):
"""Determine the type of content from the text"""
detection_task = Task(
description=f"""
Analyze the following text and determine whether it is:
1. A case study
2. A scientific article
3. A news item
4. Other (specify)
Identify key indicators that support your classification, such as:
- Structure (abstract, methods, results for scientific articles)
- Language patterns (narrative style for case studies, journalistic style for news)
- Content elements (company information, research data, current events)
Return the content type and confidence level in the following format:
Content Type: [type]
Confidence: [high/medium/low]
Indicators: [list key indicators]
Text to analyze:
{text[:3000]}
""",
expected_output="Content type classification with indicators",
agent=self.create_detector_agent()
)
crew = Crew(
agents=[self.create_detector_agent()],
tasks=[detection_task],
process=Process.sequential,
verbose=False
)
result = crew.kickoff()
# Parse the result to extract content type
content_type = "Case Study" # Default
confidence = "Medium"
indicators = []
for line in result.raw.split('\n'):
if line.startswith('Content Type:'):
content_type = line.replace('Content Type:', '').strip()
elif line.startswith('Confidence:'):
confidence = line.replace('Confidence:', '').strip()
elif line.startswith('Indicators:'):
# Get all indicators (might be on multiple lines)
indicator_text = result.raw.split('Indicators:')[1].strip()
indicators = [ind.strip() for ind in indicator_text.split('-') if ind.strip()]
return {
"type": content_type,
"confidence": confidence,
"indicators": indicators
}
def process_files(uploaded_files):
"""Process uploaded files and extract text with content type detection"""
combined_text = ""
first_file_text = ""
temp_file_paths = []
for file in uploaded_files:
file.seek(0) # Reset file pointer
# Extract text based on file type
if file.name.endswith('.pdf'):
text = extract_text_from_pdf(file)
elif file.name.endswith('.docx'):
text = extract_text_from_docx(file)
elif file.name.endswith(('.pptx', '.ppt')):
text = extract_text_from_pptx(file)
else:
continue
# Save first file's text for metadata extraction
if not first_file_text:
first_file_text = text
combined_text += text + "\n\n"
# Create temporary file for each uploaded file
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file.name.split('.')[-1]}") as tmp_file:
file.seek(0)
tmp_file.write(file.getvalue())
temp_file_paths.append(tmp_file.name)
# Detect content type if API key is available
content_type = {"type": "Unknown", "confidence": "Low", "indicators": []}
if os.environ.get("GEMINI_API_KEY") and first_file_text:
detector = ContentTypeDetector(os.environ.get("GEMINI_API_KEY"))
content_type = detector.detect_content_type(first_file_text)
return combined_text, first_file_text, temp_file_paths, content_type
#---------------------------- Document Generator (Document Analysis) ----------------------------#
class DocumentGenerator:
def __init__(self):
self.bullet_counter = 1
def add_toc(self, doc):
"""Add native Word table of contents"""
paragraph = doc.add_paragraph()
run = paragraph.add_run()
# Start the TOC field
fldChar1 = create_element('w:fldChar')
create_attribute(fldChar1, 'w:fldCharType', 'begin')
run._r.append(fldChar1)
# Add TOC instruction text
instrText = create_element('w:instrText')
create_attribute(instrText, 'xml:space', 'preserve')
instrText.text = 'TOC \\o "1-3" \\h \\z \\u'
run._r.append(instrText)
# End the TOC field
fldChar2 = create_element('w:fldChar')
create_attribute(fldChar2, 'w:fldCharType', 'end')
run._r.append(fldChar2)
def setup_document_styles(self, doc):
"""Set up custom styles for the document"""
styles = doc.styles
# Heading styles
for level in range(1, 4):
style_name = f'Heading {level}'
if style_name not in styles:
style = styles.add_style(style_name, WD_STYLE_TYPE.PARAGRAPH)
style.base_style = styles['Normal']
style.font.size = Pt(16 - (level * 2))
style.font.bold = True
# Custom bullet point style
if 'Bullet Point' not in styles:
bullet_style = styles.add_style('Bullet Point', WD_STYLE_TYPE.PARAGRAPH)
bullet_style.base_style = styles['Normal']
bullet_style.font.size = Pt(11)
bullet_style.paragraph_format.left_indent = Inches(0.25)
bullet_style.paragraph_format.first_line_indent = Inches(-0.25)
def add_formatted_text(self, paragraph, text):
"""Add text to paragraph with proper formatting"""
# First handle double asterisks
parts = re.split(r'(\*\*.*?\*\*)', text)
for part in parts:
if part.startswith('**') and part.endswith('**'):
# Handle bold text (surrounded by double asterisks)
run = paragraph.add_run(part[2:-2])
run.bold = True
else:
# Handle single asterisks within the remaining text
# Split by single asterisks
subparts = re.split(r'(\*[^\*]+\*)', part)
for subpart in subparts:
if subpart.startswith('*') and subpart.endswith('*') and len(subpart) > 2:
# It's a bold text marked with single asterisks
run = paragraph.add_run(subpart[1:-1])
run.bold = True
else:
# Regular text
if subpart.strip():
paragraph.add_run(subpart)
def clean_content(self, text):
"""Clean content and formatting"""
# Remove HTML tags
text = re.sub(r'<[^>]+>', '', text)
# Remove markdown headers while preserving content
text = re.sub(r'^#+\s*(.+)$', r'\1', text, flags=re.MULTILINE)
# Remove duplicate section headers
text = re.sub(r'(?i)^(.*?)\n\*\*\1\*\*', r'\1', text, flags=re.MULTILINE)
# Clean up <br> tags
text = re.sub(r'<br\s*/?>', '\n', text)
# Remove excessive newlines
text = re.sub(r'\n\s*\n', '\n\n', text)
# Process line by line to handle bullet points and bold text
lines = text.split('\n')
cleaned_lines = []
for line in lines:
line = line.strip()
if not line:
cleaned_lines.append(line)
continue
# Check if line starts with a single asterisk (potential bullet point)
if line.lstrip().startswith('*'):
# Skip if it starts with double asterisks
if line.lstrip().startswith('**'):
cleaned_lines.append(line)
continue
# Count asterisks that are not part of bold text markers
# First, temporarily replace bold text markers
temp_line = re.sub(r'\*\*.*?\*\*', '', line) # Remove double-asterisk patterns
temp_line = re.sub(r'\*[^\*]+\*', '', temp_line) # Remove single-asterisk patterns
# If there's exactly one asterisk left, it's a bullet point
if temp_line.count('*') == 1:
content = line.replace('*', '', 1).strip()
cleaned_lines.append(f'* {content}')
else:
cleaned_lines.append(line)
else:
cleaned_lines.append(line)
return '\n'.join(cleaned_lines).strip()
def add_section_content(self, doc, section_name, content):
"""Add a section with proper formatting"""
# Add section heading
heading = doc.add_heading(section_name.upper(), level=1)
heading.alignment = WD_ALIGN_PARAGRAPH.LEFT
# Clean and process the content
content = self.clean_content(content)
lines = content.split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Check for bullet point line
is_bullet = line.startswith('* ') and not line.startswith('** ')
if is_bullet:
# Create bullet point paragraph
bullet_paragraph = doc.add_paragraph(style='Bullet Point')
bullet_paragraph.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY
bullet_paragraph.paragraph_format.left_indent = Inches(0.5)
bullet_paragraph.paragraph_format.first_line_indent = Inches(-0.25)
# Add bullet character
bullet_paragraph.add_run('β’ ')
# Add the rest of the line with formatting
content = line[2:].strip()
self.add_formatted_text(bullet_paragraph, content)
else:
# Regular paragraph
p = doc.add_paragraph()
p.paragraph_format.alignment = WD_ALIGN_PARAGRAPH.JUSTIFY
self.add_formatted_text(p, line)
def create_word_document(self, title, author, sections_content, document_type):
"""Create and return a formatted Word document"""
doc = Document()
self.setup_document_styles(doc)
# Title section
title_paragraph = doc.add_paragraph()
title_paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
# Set title based on document type
if document_type == "Case Study":
title_run = title_paragraph.add_run("CASE BREAKDOWN")
elif document_type == "Scientific Article":
title_run = title_paragraph.add_run("ARTICLE ANALYSIS")
elif document_type == "News Item":
title_run = title_paragraph.add_run("NEWS ANALYSIS")
else:
title_run = title_paragraph.add_run("DOCUMENT ANALYSIS")
title_run.font.size = Pt(16)
title_run.bold = True
# Document name and author
case_name_paragraph = doc.add_paragraph()
case_name_paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
case_name_run = case_name_paragraph.add_run(title)
case_name_run.font.size = Pt(14)
case_name_run.italic = True
author_paragraph = doc.add_paragraph()
author_paragraph.alignment = WD_ALIGN_PARAGRAPH.CENTER
author_run = author_paragraph.add_run(author)
author_run.font.size = Pt(12)
# Separator line
separator = doc.add_paragraph()
separator.alignment = WD_ALIGN_PARAGRAPH.CENTER
separator_run = separator.add_run('_' * 50)
# Add TOC
toc_heading = doc.add_heading('TABLE OF CONTENTS', level=1)
toc_heading.alignment = WD_ALIGN_PARAGRAPH.CENTER
self.add_toc(doc)
doc.add_page_break()
# Add sections
for section_name, content in sections_content.items():
self.add_section_content(doc, section_name, content)
doc.add_paragraph() # Add spacing between sections
return doc
# Helper functions for Word document
def create_element(name):
return OxmlElement(name)
def create_attribute(element, name, value):
element.set(qn(name), value)
#---------------------------- Document Analysis Generator ----------------------------#
class DocumentMetadata(BaseModel):
title: str = Field(description="The title of the document")
author: str = Field(description="The author(s) of the document")
class SectionContent(BaseModel):
content: str = Field(description="Generated content for the section")
review: str = Field(description="Review of the content with score and feedback")
# Define section templates based on content type
def get_sections_by_content_type(content_type):
if content_type == "Case Study":
return {
"Case Synopsis": """Summarize the case in 3β4 paragraphs of a total 300 words. Explain the company's background, the industry it operates in,
and the key challenge or strategic decision it faces. Discuss any turning points or dilemmas. Why is this case relevant for
business students?
Position in Course: In 1β2 sentences, describe which type of course this case is best suited for
(e.g., Operations Strategy, AI in Business, Global Supply Chain). What key topics does it help students understand""",
"Learning Objectives": """List 8β10 learning objectives for this case. A total of 300 words. What should students understand after analyzing this case? Focus on
leadership decisions, operational insights, AI adoption, or ethical concerns""",
"Teaching Strategies":
"""
Describe 8β10 ways an instructor can effectively teach this case. Should they use role-playing? A total of 350 words.
A structured debate? Analyzing real-world examples? How can students actively engage with the material? 1st point should be Approach and second point should be Objective
""",
"Suggested Teaching Plan":
"""
Outline a structured teaching plan for this case. What should be covered first? A total of 350 words.
When should student activities be introduced? How should the case discussion conclude?
""",
"Key Points and Insights":
"""
List 10 key insights students should take from this case. What makes this case unique? A total of 300 words.
What are the most important strategic, operational, or ethical considerations?
""",
"Further Insights":
"""
Provide additional insights that go beyond the case. How does this case relate to
larger business trends? What external factors (e.g., regulation, innovation, geopolitical forces) could impact the situation? A total of 400 words.
""",
"Discussion Questions & Answers":
"""
Create 8β10 discussion questions about the case. What are the key strategic dilemmas?
Where do trade-offs exist? How can students critically analyze the company's decisions? Provide concise answers. A total of 450 words.
""",
"Assignment Exercises":
"""
List 8β10 in-depth assignments that encourage strategic thinking, data analysis,
or real-world application. Include a mix of strategy proposals, financial analysis,
role-playing exercises, and ethical debates. Define the expected format
(e.g., business report, presentation, comparative analysis) and objective of each exercise. A total of 550- 600 words.
""",
"Automated Conversation":
"""
Write an AI-generated conversation between three personas relevant to the case. A total of 650- 700 words.
One should be an executive making a strategic decision, another should be an expert,
and the third should be skeptical or resistant. The conversation should explore the challenges, risks, and strategic importance of the case.
""",
"Case Suggestions":
"""
List 10 ways to make this case more interactive. Should students role-play as executives?
Simulate a crisis response? Conduct a competitive market analysis?
Suggest unique, hands-on ways to engage with the case. A total of 550 words.
"""
}
elif content_type == "Scientific Article":
return {
"Article Summary": """Summarize the scientific article in 3-4 paragraphs totaling 300 words. Explain the research question,
methodology, key findings, and significance. Discuss the implications for the field.
Position in Course: In 1-2 sentences, describe which type of course this article is
best suited for and what key topics it helps students understand.""",
"Research Methodology Analysis": """Analyze the research methodology in 300 words. What approaches were used?
What were the strengths and limitations? How could the methodology be improved?
Focus on sample selection, data collection methods, analytical techniques, and validation.""",
"Key Findings and Implications": """Summarize the 8-10 most important findings and their implications in 350 words.
What new knowledge does this research contribute? How does it confirm or challenge
existing theories? What are the practical applications of these findings?""",
"Learning Objectives": """List 8-10 learning objectives for this scientific article in 300 words.
What should students understand after analyzing this article? Focus on research methods,
data analysis, scientific reasoning, or ethical implications.""",
"Teaching Strategies": """Describe 8-10 ways an instructor can effectively teach this article in 350 words.
Should they use research replication? Critical analysis? Applying findings to case studies?
How can students actively engage with the research methodology and results?""",
"Classroom Activities": """Outline 8-10 specific classroom activities in 400 words that help students
engage with the research, methodology, and findings. Include individual and group
activities that develop critical thinking and analytical skills.""",
"Discussion Questions & Answers": """Create 8-10 discussion questions about the article in 450 words.
What are the key methodological considerations? How do the findings relate to existing
research? What future research might build on these findings? Provide concise answers.""",
"Simulated Research Discussion":
"""
Write a simulated research discussion between a principal investigator and 3-4 lab members/colleagues analyzing
this scientific article. A total of 500-600 words. Include methodological critiques, alternative interpretations of data,
suggestions for follow-up experiments, and connections to related research areas. The discussion should demonstrate
scientific thinking, healthy skepticism, and collaborative problem-solving. Include moments of disagreement,
clarification, and breakthrough insights that advance understanding of the research. You can also create persons and their roles based on the article.
""",
"Further Research Directions": """Suggest 8-10 ways the research could be extended or applied in 400 words.
What questions remain unanswered? What methodology improvements could be made?
How could the findings be tested in different contexts?""",
"Interdisciplinary Connections": """Explore how this research connects to 8-10 other disciplines or fields in 450 words.
How might these findings impact or be applied in other domains?
What cross-disciplinary research opportunities exist?""",
"Critical Evaluation": """Provide a critical evaluation of the article in 500 words.
Assess the strength of the evidence, validity of conclusions, and overall contribution
to the field. What are the article's strengths and limitations?"""
}
elif content_type == "News Item":
return {
"News Summary": """Summarize the news item in 3-4 paragraphs totaling 300 words.
Explain the key events, stakeholders involved, and broader context.
Discuss the significance and implications. In 1-2 sentences, describe why
this news item is relevant for students and what course topics it relates to.""",
"Contextual Analysis": """Provide historical and current context for this news item in 350 words.
What events, trends, or policies led to this situation? How does this
news fit into broader patterns or developments in this field?""",
"Key Stakeholders Analysis": """Identify and analyze 8-10 key stakeholders in 400 words.
For each stakeholder, explain their interests, influence, positions,
and how they're affected by the events described in the news item.""",
"Impact Assessment": """Assess the immediate and potential long-term impacts in 350 words.
What are the economic, social, political, and environmental implications?
How might different industries, communities, or policies be affected?""",
"Learning Objectives": """List 8-10 learning objectives in 300 words. What should students
understand after analyzing this news item? Focus on analytical skills,
media literacy, critical thinking, or connecting theory to current events.""",
"Discussion Framework": """Create a structured framework for discussing this news item in 400 words.
How should the discussion be organized? What key questions should guide
the conversation? How can instructors ensure balanced perspectives?""",
"Discussion Questions & Answers": """Create 8-10 discussion questions in 450 words.
What critical thinking questions will help students analyze this news?
How can students evaluate different perspectives? Provide concise answers.""",
"Simulated Panel Discussion":
"""
Write a simulated panel discussion between a moderator and 3-4 experts analyzing this news item.
A total of 700-800 words. Include diverse professional and political perspectives on the events, causes,
implications, and media coverage. The panelists should represent different stakeholders or viewpoints,
with the moderator guiding the conversation through key aspects of the news. Include moments of civil
disagreement, fact-checking, contextualizing of information, and insights into broader trends related to the news item.
You can also create persons and their roles based on the article.
""",
"Classroom Activities": """Suggest 8-10 classroom activities in 500 words related to this news item.
Include debates, simulations, research projects, media analysis exercises,
and other activities that promote deep engagement with the content.""",
"Media Analysis Component": """Analyze how this news has been covered by different sources in 400 words.
Compare coverage across 3-4 different media outlets. Identify potential
biases, framing choices, and what might be emphasized or omitted.""",
"Related Resources": """Identify 8-10 related resources in 350 words for further exploration.
Include academic articles, books, documentaries, podcasts, and other
news sources that provide deeper context or alternative perspectives."""
}
else:
return {
"Content Summary": """Summarize the document in 3-4 paragraphs totaling 300 words.
Explain the key themes, information, and purpose of the content.
Discuss why this content is valuable for teaching and learning.""",
"Key Points and Themes": """Identify 8-10 key points and themes in 350 words.
What are the most important ideas, concepts, or arguments presented?
What makes this content valuable to study?""",
"Learning Objectives": """List 8-10 learning objectives in 300 words. What should students
understand after studying this content? What skills might they develop?
How does this content connect to broader educational goals?""",
"Teaching Approaches": """Suggest 8-10 teaching approaches in 400 words.
How can this content be effectively taught? What instructional
methods would be most appropriate for this material?""",
"Discussion Questions": """Create 8-10 discussion questions in 450 words.
What questions will stimulate critical thinking and deep engagement
with the content? Provide brief answers or guidance for each.""",
"Learning Activities": """Propose 8-10 learning activities in 500 words.
What individual and group activities would help students
engage with and apply the content? Include a mix of analytical,
creative, and practical exercises.""",
"Further Exploration": """Suggest resources and directions for further exploration in 350 words.
What related topics might students investigate? What additional
readings or materials would complement this content?""",
"Simulated Dialogue":
"""
Write a simulated dialogue between an educator and 3-4 participants analyzing this content.
A total of 700-800 words. Include different interpretations, connections to prior knowledge,
practical applications, and critical questions about the material. The dialogue should demonstrate
how different perspectives can enrich understanding and how thoughtful questioning can reveal deeper
insights about the content. Include moments of clarification, realization, and connection-making.
You can also create persons and their roles based on the article.
""",
"Relevance and Applications": """Discuss the relevance and practical applications in 400 words.
How does this content apply to real-world situations?
Why is it important for students to engage with this material?""",
"Critical Analysis": """Provide a critical analysis of the content in 450 words.
What perspectives are represented or missing? What assumptions
underlie the content? What strengths and limitations does it have?""",
"Assessment Strategies": """Suggest 8-10 assessment strategies in 400 words.
How might instructors evaluate student understanding and
application of this content? Include formal and informal
assessment approaches."""
}
class DocumentAnalysisCrew:
def __init__(self, api_key):
self.api_key = api_key
self.llm = LLM(
model='gemini/gemini-2.0-flash',
api_key=self.api_key,
provider="gemini"
)
def create_metadata_agent(self):
return Agent(
role="Metadata Analyzer",
goal="Extract title and author information from document content",
backstory="""You specialize in analyzing document content to identify key metadata
such as titles, authors, and other publication information. You have a keen eye for
identifying the most important and relevant document metadata, even when it's not
explicitly labeled.""",
llm=LLM(
model='gemini/gemini-2.0-flash',
api_key=self.api_key,
provider="gemini"
),
verbose=True
)
def create_content_generator_agent(self):
return Agent(
role="Document Content Generator",
goal="Generate comprehensive analysis content based on section requirements",
backstory="""You are an expert analyst specializing in creating educational content from various
document types including case studies, scientific articles, and news items. You excel at breaking
down complex content into structured, insightful analysis that highlights key learning points, research
findings, or current events context. You have extensive experience in education and know how to create
content that is valuable for teaching and learning.""",
llm=self.llm,
verbose=True
)
def create_content_reviewer_agent(self):
return Agent(
role="Content Quality Reviewer",
goal="Evaluate and score content for quality, relevance, and depth",
backstory="""You are a seasoned academic reviewer with years of experience evaluating
educational content across various formats. You have a strong understanding of what makes
effective teaching material for different document types and can provide constructive feedback
to improve content quality. You carefully analyze content for relevance, clarity, depth, and
educational value.""",
llm=self.llm,
verbose=True
)
def create_metadata_task(self, text):
return Task(
description=f"""
Analyze the extracted text and identify the document title and author(s).
Look for information typically found at the beginning of a document, such as:
1. The document title (article title, case study name, news headline)
2. The author name(s)
Return the identified title and author in the following format:
Title: [the title]
Author: [the author(s)]
If you cannot find this information with certainty, use "Untitled Document" for the title
and "Unknown Author" for the author.
Text to analyze:
{text[:2000]}
""",
expected_output="Extracted metadata with title and author information",
agent=self.create_metadata_agent()
)
def create_section_task(self, section_name, prompt, text, content_type):
# Adjust prompt based on content type and section
# Content type adjustments are handled at the section template level now
return Task(
description=f"""
Generate content for the '{section_name}' section of the document analysis.
{prompt}
Formatting Requirements:
1. Use **bold** for important terms or concepts
2. For bullet points, start each line with "* " (asterisk followed by space)
3. For numbered lists, use "1. ", "2. " etc.
4. Use line breaks between paragraphs
5. Keep paragraphs focused and concise
Remember that this is for a {content_type} document, so tailor your analysis appropriately.
Ensure the content is structured, well-organized, and follows proper formatting.
Text to analyze:
{text[:5000]}
""",
expected_output=f"A well-formatted {section_name} section",
agent=self.create_content_generator_agent()
)
def create_review_task(self, section_name, content, content_type):
return Task(
description=f"""
Review the content for the '{section_name}' section for a {content_type} document.
Score it from 1-10 based on:
1. Relevance to the section (0-3)
2. Clarity and coherence (0-3)
3. Depth of analysis (0-4)
Provide a structured review with:
1. Numerical score
2. Specific strengths
3. Areas for improvement
Content to review:
{content}
""",
expected_output=f"A review of the {section_name} section",
agent=self.create_content_reviewer_agent()
)
def extract_metadata(self, text):
metadata_task = self.create_metadata_task(text)
crew = Crew(
agents=[self.create_metadata_agent()],
tasks=[metadata_task],
process=Process.sequential,
verbose=False
)
result = crew.kickoff()
title = "Untitled Document"
author = "Unknown Author"
for line in result.raw.split('\n'):
if line.startswith('Title:'):
extracted_title = line.replace('Title:', '').strip()
if extracted_title and extracted_title != "[Untitled Document]":
title = extracted_title
elif line.startswith('Author:'):
extracted_author = line.replace('Author:', '').strip()
if extracted_author and extracted_author != "[Unknown Author]":
author = extracted_author
return title, author
def generate_section_content(self, text, section_name, section_prompt, content_type):
section_task = self.create_section_task(section_name, section_prompt, text, content_type)
crew = Crew(
agents=[self.create_content_generator_agent()],
tasks=[section_task],
process=Process.sequential,
verbose=False
)
result = crew.kickoff()
return result.raw
def review_content(self, content, section_name, content_type):
review_task = self.create_review_task(section_name, content, content_type)
crew = Crew(
agents=[self.create_content_reviewer_agent()],
tasks=[review_task],
process=Process.sequential,
verbose=False
)
result = crew.kickoff()
return result.raw
#---------------------------- Teaching Plan Generator ----------------------------#
class AgentTracker:
def __init__(self):
self.current_agent = ""
self.placeholder = None
def set_placeholder(self, placeholder):
self.placeholder = placeholder
def update_agent(self, agent_name):
self.current_agent = agent_name
if self.placeholder:
with self.placeholder:
st.write(f"π€ Agent in action: **{self.current_agent}**")
@tool
def extract_text(file_path: str) -> str:
"""
Extract text from a file based on its extension.
Args:
file_path (str): Path to the file
Returns:
str: Extracted text content
"""
try:
file_extension = file_path.split('.')[-1].lower()
if file_extension == 'pdf':
reader = PyPDF2.PdfReader(file_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
elif file_extension == 'docx':
return docx2txt.process(file_path)
elif file_extension in ['ppt', 'pptx']:
presentation = Presentation(file_path)
text = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
else:
return f"Unsupported file format: {file_extension}"
except Exception as e:
return f"Error extracting text: {str(e)}"
def create_teaching_plan_crew(file_paths, content_type):
# Initialize LLM
my_llm = LLM(
model='gemini/gemini-2.0-flash',
api_key=os.environ.get("GEMINI_API_KEY"),
provider="gemini"
)
# Create tracker instance
tracker = AgentTracker()
# Adjust agent descriptions and goals based on content type
if content_type == "Case Study":
analyzer_role = 'Case Study Analyzer'
analyzer_goal = 'Extract key concepts, objectives, and data from case study files'
analyzer_backstory = 'You are an expert in analyzing business case studies. Identify core themes, data points, and learning objectives.'
designer_role = 'Teaching Plan Designer'
designer_goal = 'Create a 2-hour lesson plan based on analyzed case study data'
designer_backstory = 'You are an educator designing a structured lesson plan. Use the extracted case study data to outline activities, discussions, and assessments.'
task_description = "Design a 2-hour lesson plan with introduction, case analysis, group activity, and assessment."
elif content_type == "Scientific Article":
analyzer_role = 'Scientific Article Analyzer'
analyzer_goal = 'Extract key research findings, methodology, and implications from scientific article'
analyzer_backstory = 'You are an expert in analyzing scientific research articles. Identify research questions, methodology, findings, and significance.'
designer_role = 'Scientific Article Teaching Designer'
designer_goal = 'Create a 2-hour research-focused lesson plan based on analyzed article data'
designer_backstory = 'You are an educator designing a structured lesson plan for scientific content. Use the extracted research data to outline discussions, critiques, and applications.'
task_description = "Design a 2-hour lesson plan with research overview, methodology analysis, findings discussion, and research application activities."
elif content_type == "News Item":
analyzer_role = 'News Content Analyzer'
analyzer_goal = 'Extract key events, stakeholders, and context from news item'
analyzer_backstory = 'You are an expert in analyzing current events and news content. Identify key events, stakeholders, and broader context.'
designer_role = 'Current Events Teaching Designer'
designer_goal = 'Create a 2-hour current events lesson plan based on analyzed news data'
designer_backstory = 'You are an educator designing a structured lesson plan for current events. Use the extracted news content to outline discussions, contextual analysis, and media literacy activities.'
task_description = "Design a 2-hour lesson plan with news overview, context discussion, stakeholder analysis, and media literacy activities."
else:
analyzer_role = 'Content Analyzer'
analyzer_goal = 'Extract key concepts, themes, and insights from document content'
analyzer_backstory = 'You are an expert in analyzing various types of documents. Identify key themes, concepts, and learning points.'
designer_role = 'Learning Plan Designer'
designer_goal = 'Create a 2-hour learning plan based on analyzed document content'
designer_backstory = 'You are an educator designing a structured learning plan. Use the extracted content to outline discussions, activities, and assessments.'
task_description = "Design a 2-hour lesson plan with content introduction, key concept analysis, interactive activities, and assessment."
# Create agents with Gemini configuration
pdf_analyzer = Agent(
role=analyzer_role,
goal=analyzer_goal,
backstory=analyzer_backstory,
llm=my_llm,
tools=[extract_text],
verbose=True,
step_callback=lambda *args, **kwargs: tracker.update_agent(analyzer_role)
)
plan_generator = Agent(
role=designer_role,
goal=designer_goal,
backstory=designer_backstory,
llm=my_llm,
verbose=True,
step_callback=lambda *args, **kwargs: tracker.update_agent(designer_role)
)
reviewer = Agent(
role='Plan Reviewer',
goal='Ensure the lesson plan is engaging and aligned with learning objectives',
backstory='You are a curriculum reviewer. Verify the plan\'s clarity, alignment with objectives, and engagement level.',
llm=my_llm,
verbose=True,
step_callback=lambda *args, **kwargs: tracker.update_agent("Plan Reviewer")
)
final_reporter = Agent(
role='Teaching Plan Reporter',
goal='Ensure to incorporate the feedback from the reviewer agent and finalize the content for the teaching plan',
backstory=f""" You are an expert educator with 20 years of experience in teaching and curriculum development
specializing in {content_type}s. You are responsible for finalizing the content for the teaching plan
and ensuring it is engaging and aligned with learning objectives. You will use the feedback from the
reviewer agent to make necessary revisions and finalize the content for the teaching plan.""",
llm=my_llm,
verbose=True,
step_callback=lambda *args, **kwargs: tracker.update_agent("Teaching Plan Reporter")
)
# Combine all file contents into one text
combined_file_path = file_paths[0] # Use the first file path for the analyzer to begin
# Define tasks
analyze_pdf = Task(
description=f"Extract and analyze the files at {', '.join(file_paths)} for key concepts and learning objectives, keeping in mind this is a {content_type}.",
config={"file_path": combined_file_path},
expected_output=f"A summary of key concepts and learning objectives extracted from the {content_type}.",
agent=pdf_analyzer
)
generate_plan = Task(
description=task_description,
expected_output=f"A detailed 2-hour lesson plan for a {content_type} with clear sections and activities.",
agent=plan_generator
)
review_plan = Task(
description=f"Review the lesson plan for clarity, alignment with objectives, and student engagement, considering this is a {content_type}.",
expected_output="Feedback on the lesson plan's clarity, alignment, and engagement level.",
agent=reviewer
)
final_plan = Task(
description=f"""Generate the final lesson plan based on the feedback, optimized for teaching a {content_type}.""",
expected_output="""
You are also responsible for ensuring the plan is clear and concise.
- It should have the overall objective to start with.
- It should have a clear introduction
- It should have detailed lesson breakdowns with the time to be spent on each section and the title of the section Highlighting all the important concepts to be taught (you can use tables to highlight the concepts in a structured way)
- It should have one powerful visual aid which can be a table That can help in better understanding for the students
- It should include a simulated 10-15 minute class discussion segment showing how a skilled educator might guide students through a key concept in the document
- It can have simple assessments that enables class participation engagement in brainstorming activities and such that can help in better understanding of the concepts.
- It should have a clear conclusion that ties back to the overall objective.
- Overall Plan should be around 1300 - 1500 words.""",
agent=final_reporter
)
# Create crew
crew = Crew(
agents=[pdf_analyzer, plan_generator, reviewer, final_reporter],
tasks=[analyze_pdf, generate_plan, review_plan, final_plan],
process=Process.sequential,
verbose=True
)
return crew, tracker
#---------------------------- Discussion Framework Generator ----------------------------#
class DiscussionFrameworkAnalyzer:
def __init__(self, api_key):
self.api_key = api_key
if not api_key:
raise ValueError("API key not found")
self.llm = LLM(
model='gemini/gemini-2.0-flash',
api_key=api_key,
provider="gemini"
)
litellm.set_verbose = True
# Create agents
self.create_agents()
def create_agents(self):
"""Create specialized agents for different tasks"""
# Document Processing Agent
self.document_processor = Agent(
role='Document Processor',
goal='Extract and clean text content from document files',
backstory="""You are an expert at processing various document types and extracting
meaningful content. You ensure the text is properly formatted and ready
for analysis.""",
tools=[Tool(
name="extract_text",
func=self.extract_text_from_file,
description="Extracts text content from files"
)],
allow_delegation=False,
llm=self.llm,
verbose=True
)
# Content Analysis Agent
self.analyzer = Agent(
role='Document Analyzer',
goal='Analyze documents and identify key points for discussion framework',
backstory="""You are an expert analyst skilled at analyzing various types of documents
and identifying crucial elements for educational discussion. You create clear, structured
analyses that highlight key insights for teaching.""",
tools=[Tool(
name="analyze_content",
func=self.analyze_document,
description="Analyzes document and creates structured discussion framework"
)],
allow_delegation=False,
llm=self.llm,
verbose=True
)
def extract_text_from_file(self, file_content: bytes) -> str:
"""Extract text from file using appropriate method"""
try:
# Create file reader object
file_obj = io.BytesIO(file_content)
# Determine file type
# This is simplified - in reality, you'd check the file signature/magic bytes
if b"%PDF" in file_content[:1024]: # Check for PDF signature
pdf_reader = PyPDF2.PdfReader(file_obj)
text_content = []
for page in pdf_reader.pages:
text_content.append(page.extract_text())
return "\n\n".join(text_content)
else:
# Try DOCX
try:
return docx2txt.process(file_obj)
except:
# Try PPTX
try:
file_obj.seek(0)
prs = Presentation(file_obj)
text_content = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text_content.append(shape.text)
return "\n\n".join(text_content)
except:
return "Unable to extract text from unsupported file format"
except Exception as e:
raise Exception(f"Extraction error: {str(e)}")
def analyze_document(self, text: str, document_type: str) -> dict:
"""Analyze document content using litellm with JSON response"""
# Adjust prompt based on document type
if document_type == "Case Study":
framework_type = "BOARD PLAN"
sections_prompt = """
Create a detailed analysis with these exact sections:
1. Main business challenge/opportunity
2. Industry context and competitors
3. Key decision points
4. Stakeholder perspectives
5. Implementation considerations
- Resource requirements
- Timeline
- Success metrics
6. Alternative approaches
7. Learning takeaways
"""
elif document_type == "Scientific Article":
framework_type = "DISCUSSION POINTS"
sections_prompt = """
Create a detailed analysis with these exact sections:
1. Main research question/hypothesis
2. Methodology assessment
3. Key findings summary
4. Limitations and validity
5. Theoretical implications
6. Practical applications
7. Future research directions
8. Interdisciplinary connections
"""
elif document_type == "News Item":
framework_type = "CURRENT EVENTS FRAMEWORK"
sections_prompt = """
Create a detailed analysis with these exact sections:
1. Main event/development
2. Historical and political context
3. Key stakeholders and perspectives
4. Media coverage analysis
5. Immediate impacts
6. Long-term implications
7. Related developments
8. Critical thinking questions
"""
else:
framework_type = "DISCUSSION FRAMEWORK"
sections_prompt = """
Create a detailed analysis with these exact sections:
1. Main topic/theme
2. Key concepts
3. Important relationships
4. Supporting evidence
5. Counterarguments/limitations
6. Practical applications
7. Discussion questions
8. Further exploration topics
"""
messages = [
{
"role": "user",
"content": f"""Analyze this {document_type.lower()} and create a structured {framework_type}.
Content: {text[:5000]}
{sections_prompt}
Also include a "Questions for Further Exploration" section.
Format the response as a JSON object with this structure:
{{
"sections": [
{{
"title": "SECTION 1: [Title]",
"points": ["point 1", "point 2", "point 3"]
}},
// ... other sections
],
"questions": {{
"title": "QUESTIONS FOR FURTHER EXPLORATION",
"points": ["question 1", "question 2"]
}},
"discussion": {{
"title": "SIMULATED DISCUSSION",
"content": "A 300-400 word simulated discussion between an educator and participants"
}}
}}"""
}
]
try:
response = litellm.completion(
model="gemini/gemini-2.0-flash",
messages=messages,
api_key=os.environ.get("GEMINI_API_KEY"),
provider="gemini",
response_format={"type": "json_object"}
)
# Extract and parse the JSON response
content = response.choices[0].message.content
return json.loads(content)
except Exception as e:
st.error(f"Analysis error: {str(e)}")
if 'response' in locals():
st.error("Raw response:")
st.code(response.choices[0].message.content)
raise
def process_document(self, file_content: bytes, document_type: str) -> dict:
"""Process the document using Crew AI agents"""
try:
# First extract text
progress_text = st.empty()
progress_text.text(f"Extracting text from {document_type.lower()}...")
text_content = self.extract_text_from_file(file_content)
# Show extracted text for verification
with st.expander("View extracted text"):
st.text(text_content[:500] + "...")
# Then analyze content
progress_text.text(f"Analyzing {document_type.lower()} content...")
result = self.analyze_document(text_content, document_type)
return result
except Exception as e:
raise Exception(f"Processing error: {str(e)}")
#---------------------------- Main App Interface ----------------------------#
# File upload section - shared across all generators
if st.session_state.uploaded_files is None:
uploaded_files = st.file_uploader(
"Upload document files (PDF, DOCX, PPT, PPTX)",
accept_multiple_files=True,
type=['pdf', 'docx', 'ppt', 'pptx']
)
if uploaded_files:
st.session_state.uploaded_files = uploaded_files
# Process files only once and store results
with st.spinner("Processing uploaded files..."):
combined_text, first_file_text, temp_file_paths, content_type = process_files(uploaded_files)
st.session_state.combined_text = combined_text
st.session_state.first_file_text = first_file_text
st.session_state.temp_file_paths = temp_file_paths
st.session_state.content_type = content_type
# Show file upload summary
st.success(f"β
{len(uploaded_files)} file(s) uploaded and processed successfully")
# Show uploaded files
for file in uploaded_files:
st.write(f"- {file.name}")
# Tabs for different generators with updated names
if st.session_state.uploaded_files:
# Show detected content type and allow user to change it
content_type_col, confidence_col = st.columns(2)
with content_type_col:
st.info(f"π Detected content type: **{st.session_state.content_type['type']}**")
with confidence_col:
st.info(f"π Detection confidence: **{st.session_state.content_type['confidence']}**")
# Always display the document type selection
content_options = ["Case Study", "Scientific Article", "News Item", "Other"]
selected_type = st.selectbox(
"Select document type:",
options=content_options,
index=content_options.index(st.session_state.content_type['type']) if st.session_state.content_type['type'] in content_options else 0,
key="document_type_selector"
)
# Update the content type in session state
if selected_type != st.session_state.content_type['type']:
st.session_state.content_type['type'] = selected_type
# Reset generated flags when document type changes
st.session_state.breakdown_generated = False
st.session_state.teaching_plan_generated = False
st.session_state.board_plan_generated = False
st.rerun()
# Update title based on content type
st.title(get_app_title(st.session_state.content_type["type"]))
# Customize tab names based on content type
if st.session_state.content_type["type"] == "Case Study":
tab_names = ["Case Breakdown Generator", "Teaching Plan Generator", "Board Plan Generator"]
elif st.session_state.content_type["type"] == "Scientific Article":
tab_names = ["Article Analysis Generator", "Teaching Plan Generator", "Discussion Points Generator"]
elif st.session_state.content_type["type"] == "News Item":
tab_names = ["News Analysis Generator", "Discussion Guide Generator", "Current Events Framework"]
else:
tab_names = ["Content Analysis Generator", "Teaching Guide Generator", "Discussion Framework"]
# Use native streamlit tabs with content-specific names
tab1, tab2, tab3 = st.tabs(tab_names)
#------------------ Document Analysis Generator Tab ------------------#
with tab1:
st.header(tab_names[0])
st.write(f"Generate a comprehensive analysis of the {st.session_state.content_type['type'].lower()} with sections for teaching purposes.")
if not st.session_state.breakdown_generated:
if not api_key:
st.warning("β οΈ Please enter an API key in the sidebar before proceeding.")
else:
# Initialize the breakdown generator
crew_manager = DocumentAnalysisCrew(api_key)
# Extract metadata
with st.spinner("Extracting document metadata..."):
title, author = crew_manager.extract_metadata(st.session_state.first_file_text)
# Display extracted metadata with option to edit
st.subheader("Extracted Document Information")
title = st.text_input("Document Title:", title)
author = st.text_input("Author:", author)
# Get sections based on content type
sections = get_sections_by_content_type(st.session_state.content_type["type"])
# Generate button
if st.button("Generate Analysis", key="breakdown_button"):
# Create tabs for content and review
content_tab, review_tab = st.tabs(["Generated Content", "Content Review"])
# Generate and display content
sections_content = {}
reviews = {}
with st.spinner("Generating content... This may take several minutes."):
progress_bar = st.progress(0)
with content_tab:
for i, (section_name, prompt) in enumerate(sections.items()):
# Generate content using the CrewAI agents
st.info(f"Generating {section_name}...")
content = crew_manager.generate_section_content(
st.session_state.combined_text,
section_name,
prompt,
st.session_state.content_type["type"]
)
sections_content[section_name] = content
# Generate review
review = crew_manager.review_content(
content,
section_name,
st.session_state.content_type["type"]
)
reviews[section_name] = review
# Display content in preview
st.subheader(section_name)
st.markdown(content)
# Update progress
progress_bar.progress((i + 1) / len(sections))
# Store generated content in session state
st.session_state.sections_content = sections_content
st.session_state.reviews = reviews
st.session_state.title = title
st.session_state.author = author
st.session_state.breakdown_generated = True
# Display reviews in review tab
with review_tab:
for section_name, review in reviews.items():
st.subheader(f"{section_name} Review")
st.markdown(review)
# Generate and store the document for later
doc_generator = DocumentGenerator()
doc = doc_generator.create_word_document(
title=title,
author=author,
sections_content=sections_content,
document_type=st.session_state.content_type["type"]
)
# Save document to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as tmp_file:
doc.save(tmp_file.name)
st.session_state.doc_path = tmp_file.name
# Allow the user to download the document
with open(st.session_state.doc_path, 'rb') as file:
# Generate filename based on content type
if st.session_state.content_type["type"] == "Case Study":
filename = f"{title.lower().replace(' ', '_')}_case_breakdown.docx"
elif st.session_state.content_type["type"] == "Scientific Article":
filename = f"{title.lower().replace(' ', '_')}_article_analysis.docx"
elif st.session_state.content_type["type"] == "News Item":
filename = f"{title.lower().replace(' ', '_')}_news_analysis.docx"
else:
filename = f"{title.lower().replace(' ', '_')}_content_analysis.docx"
st.download_button(
label=f"π₯ Download {st.session_state.content_type['type']} Analysis (DOCX)",
data=file,
file_name=filename,
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
key="download_docx_button"
)
else:
# If we already have generated content, display it without regenerating
st.subheader("Extracted Document Information")
st.text_input("Document Title:", value=st.session_state.title, key="title_display", disabled=True)
st.text_input("Author:", value=st.session_state.author, key="author_display", disabled=True)
# Display the generated content in tabs
content_tab, review_tab = st.tabs(["Generated Content", "Content Review"])
with content_tab:
for section_name, content in st.session_state.sections_content.items():
st.subheader(section_name)
st.markdown(content)
with review_tab:
for section_name, review in st.session_state.reviews.items():
st.subheader(f"{section_name} Review")
st.markdown(review)
# Allow the user to download the document without regenerating
with open(st.session_state.doc_path, 'rb') as file:
# Generate filename based on content type
if st.session_state.content_type["type"] == "Case Study":
filename = f"{st.session_state.title.lower().replace(' ', '_')}_case_breakdown.docx"
elif st.session_state.content_type["type"] == "Scientific Article":
filename = f"{st.session_state.title.lower().replace(' ', '_')}_article_analysis.docx"
elif st.session_state.content_type["type"] == "News Item":
filename = f"{st.session_state.title.lower().replace(' ', '_')}_news_analysis.docx"
else:
filename = f"{st.session_state.title.lower().replace(' ', '_')}_content_analysis.docx"
st.download_button(
label=f"π₯ Download {st.session_state.content_type['type']} Analysis (DOCX)",
data=file,
file_name=filename,
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
key="download_docx_button"
)
#------------------ Teaching Plan Generator Tab ------------------#
with tab2:
st.header(tab_names[1])
st.write(f"Generate a comprehensive teaching plan for the {st.session_state.content_type['type'].lower()}.")
if not st.session_state.teaching_plan_generated:
if not api_key:
st.warning("β οΈ Please enter an API key in the sidebar before proceeding.")
else:
# Create a button to start generation
if st.button("Generate Teaching Plan", key="teaching_plan_button"):
try:
# Create placeholders for UI updates
progress_placeholder = st.empty()
agent_status_placeholder = st.empty()
# Initialize progress bar
progress_bar = progress_placeholder.progress(0)
# Update progress
progress_bar.progress(10)
st.info("π Initializing crew and analyzing documents...")
# Create crew with content type awareness
crew, tracker = create_teaching_plan_crew(
st.session_state.temp_file_paths,
st.session_state.content_type["type"]
)
# Set the tracker's placeholder
tracker.set_placeholder(agent_status_placeholder)
# Update progress
progress_bar.progress(30)
st.info("π Document analysis in progress...")
# Start the execution
start_time = time.time()
result = crew.kickoff(inputs={"file_path": st.session_state.temp_file_paths[0]})
result_text = str(result) # Convert CrewOutput to string
# Update progress
progress_bar.progress(90)
st.info("βοΈ Finalizing teaching plan...")
# Calculate execution time
execution_time = time.time() - start_time
# Complete progress
progress_bar.progress(100)
agent_status_placeholder.empty() # Clear the agent status
# Save results to session state
st.session_state.teaching_plan_execution_time = execution_time
st.session_state.teaching_plan_result = result_text
st.session_state.teaching_plan_generated = True
# Display the result
st.success(f"β
Teaching plan generated successfully in {execution_time:.2f} seconds!")
st.subheader("π Generated Teaching Plan")
st.markdown(result_text)
# Generate appropriate filename based on content type
if st.session_state.content_type["type"] == "Case Study":
filename = "case_study_teaching_plan.md"
elif st.session_state.content_type["type"] == "Scientific Article":
filename = "article_teaching_plan.md"
elif st.session_state.content_type["type"] == "News Item":
filename = "news_discussion_guide.md"
else:
filename = "teaching_plan.md"
# Provide download option
st.download_button(
label="π₯ Download Teaching Plan (Markdown)",
data=result_text,
file_name=filename,
mime="text/markdown",
)
except Exception as e:
st.error(f"β An error occurred during processing: {str(e)}")
# Show instructions
with st.expander("βΉοΈ How it works"):
if st.session_state.content_type["type"] == "Case Study":
instructions = """
The Teaching Plan Generator creates a comprehensive 2-hour lesson plan for case studies with:
1. **Clear learning objectives** tied to the case study
2. **Structured timeline** with time allocations for each activity
3. **Case discussion framework** for effective analysis
4. **Group activities** that apply business concepts
5. **Assessment strategies** to measure understanding
"""
elif st.session_state.content_type["type"] == "Scientific Article":
instructions = """
The Teaching Plan Generator creates a comprehensive 2-hour lesson plan for scientific articles with:
1. **Research objectives** tied to the article's methodology
2. **Structured timeline** for analyzing research components
3. **Critical evaluation framework** for assessing research quality
4. **Application activities** that connect research to practice
5. **Research extension opportunities** for further exploration
"""
elif st.session_state.content_type["type"] == "News Item":
instructions = """
The Discussion Guide Generator creates a comprehensive 2-hour lesson plan for news items with:
1. **Context objectives** for understanding the news event
2. **Structured timeline** for exploring different perspectives
3. **Media literacy framework** for critical news consumption
4. **Current events activities** that connect to broader concepts
5. **Discussion strategies** to explore implications and impacts
"""
else:
instructions = """
The Teaching Guide Generator creates a comprehensive 2-hour lesson plan with:
1. **Clear learning objectives** tied to the document content
2. **Structured timeline** with time allocations for each activity
3. **Engaging activities** for effective student learning
4. **Discussion questions** to promote critical thinking
5. **Assessment strategies** to measure understanding
"""
st.write(instructions)
st.write("""
The AI uses a team of specialized agents to analyze your document, create a draft plan,
review it for quality, and finalize it into a polished teaching resource.
""")
else:
# Display the previously generated content
st.success(f"β
Teaching plan generated successfully in {st.session_state.teaching_plan_execution_time:.2f} seconds!")
st.subheader("π Generated Teaching Plan")
st.markdown(st.session_state.teaching_plan_result)
# Generate appropriate filename based on content type
# Generate appropriate filename based on content type
if st.session_state.content_type["type"] == "Case Study":
md_filename = "case_study_teaching_plan.md"
docx_filename = "case_study_teaching_plan.docx"
docx_title = "Case Study Teaching Plan"
elif st.session_state.content_type["type"] == "Scientific Article":
md_filename = "article_teaching_plan.md"
docx_filename = "article_teaching_plan.docx"
docx_title = "Scientific Article Teaching Plan"
elif st.session_state.content_type["type"] == "News Item":
md_filename = "news_discussion_guide.md"
docx_filename = "news_discussion_guide.docx"
docx_title = "News Item Discussion Guide"
else:
md_filename = "teaching_plan.md"
docx_filename = "teaching_plan.docx"
docx_title = "Teaching Plan"
# Create columns for download buttons
col1, col2 = st.columns(2)
# Provide download options
with col1:
st.download_button(
label="π₯ Download as Markdown",
data=st.session_state.teaching_plan_result,
file_name=md_filename,
mime="text/markdown",
)
with col2:
# Create DOCX file from the markdown content
docx_path = create_docx_from_markdown(
st.session_state.teaching_plan_result,
docx_title,
st.session_state.content_type["type"]
)
# Provide DOCX download button
with open(docx_path, 'rb') as file:
st.download_button(
label="π₯ Download as DOCX",
data=file,
file_name=docx_filename,
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
key="teaching_plan_docx"
)
#------------------ Discussion Framework Generator Tab ------------------#
with tab3:
# Update header based on content type
st.header(tab_names[2])
# Update description based on content type
if st.session_state.content_type["type"] == "Case Study":
description = "Generate a structured board plan analysis for the case study."
elif st.session_state.content_type["type"] == "Scientific Article":
description = "Generate key discussion points based on the scientific article."
elif st.session_state.content_type["type"] == "News Item":
description = "Generate a current events analysis framework for the news item."
else:
description = "Generate a structured discussion framework for the document."
st.write(description)
if not st.session_state.board_plan_generated:
if not api_key:
st.warning("β οΈ Please enter an API key in the sidebar before proceeding.")
else:
# Create a button to start generation with label based on content type
if st.button(f"Generate {tab_names[2]}", key="board_plan_button"):
try:
# Initialize the analyzer
analyzer = DiscussionFrameworkAnalyzer(api_key)
with st.spinner(f"Analyzing {st.session_state.content_type['type'].lower()} to generate {tab_names[2].lower()}..."):
# Get content from first uploaded file
file = st.session_state.uploaded_files[0]
file_content = file.getvalue()
# Process the document with content type awareness
analysis_result = analyzer.process_document(
file_content,
st.session_state.content_type["type"]
)
# Store in session state
st.session_state.board_plan_result = analysis_result
st.session_state.board_plan_generated = True
# Generate markdown for download
markdown_content = f"# {tab_names[2]}\n\n"
for section in analysis_result['sections']:
markdown_content += f"## {section['title']}\n\n"
for point in section['points']:
markdown_content += f"* {point}\n"
markdown_content += "\n"
if 'questions' in analysis_result:
markdown_content += f"## {analysis_result['questions']['title']}\n\n"
for point in analysis_result['questions']['points']:
markdown_content += f"* {point}\n"
st.session_state.board_plan_markdown = markdown_content
st.success(f"{tab_names[2]} generated successfully!")
# Display the analysis results
st.subheader(tab_names[2])
for section in analysis_result['sections']:
with st.expander(section['title'], expanded=True):
for point in section['points']:
st.markdown(f"β’ {point}")
if 'questions' in analysis_result:
st.subheader("Questions for Further Exploration")
for point in analysis_result['questions']['points']:
st.markdown(f"β’ {point}")
if 'discussion' in analysis_result:
st.subheader("Simulated Discussion")
st.markdown(analysis_result['discussion']['content'])
# Generate appropriate filename based on content type
if st.session_state.content_type["type"] == "Case Study":
md_filename = "board_plan.md"
docx_filename = "board_plan.docx"
docx_title = "Board Plan Analysis"
elif st.session_state.content_type["type"] == "Scientific Article":
md_filename = "discussion_points.md"
docx_filename = "discussion_points.docx"
docx_title = "Discussion Points Analysis"
elif st.session_state.content_type["type"] == "News Item":
md_filename = "current_events_framework.md"
docx_filename = "current_events_framework.docx"
docx_title = "Current Events Framework"
else:
md_filename = "discussion_framework.md"
docx_filename = "discussion_framework.docx"
docx_title = "Discussion Framework"
# Create columns for download buttons
col1, col2 = st.columns(2)
# Provide download options
with col1:
st.download_button(
label="π₯ Download as Markdown",
data=st.session_state.board_plan_markdown,
file_name=md_filename,
mime="text/markdown",
)
with col2:
# Create DOCX file from the markdown content
docx_path = create_docx_from_markdown(
st.session_state.board_plan_markdown,
docx_title,
st.session_state.content_type["type"]
)
# Provide DOCX download button
with open(docx_path, 'rb') as file:
st.download_button(
label="π₯ Download as DOCX",
data=file,
file_name=docx_filename,
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document",
key="discussion_framework_docx"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
st.error("Please ensure the file is not encrypted and contains extractable text.")
# Show instructions based on content type
with st.expander("βΉοΈ How it works"):
if st.session_state.content_type["type"] == "Case Study":
instructions = """
The Board Plan Generator creates a structured analysis with these components:
1. **Main business challenge/opportunity** being addressed in the case study
2. **Industry context and competitors** relevant to the case
3. **Key decision points** that require strategic choices
4. **Stakeholder perspectives** from different roles and viewpoints
5. **Implementation considerations** including resources, timeline, and metrics
6. **Alternative approaches** that could be considered
7. **Learning takeaways** for applying key lessons
"""
elif st.session_state.content_type["type"] == "Scientific Article":
instructions = """
The Discussion Points Generator creates a structured analysis with these components:
1. **Main research question/hypothesis** examined in the article
2. **Methodology assessment** evaluating research approach
3. **Key findings summary** highlighting important discoveries
4. **Limitations and validity** considerations
5. **Theoretical implications** for the field
6. **Practical applications** of the research
7. **Future research directions** suggested by the findings
8. **Interdisciplinary connections** to other fields
"""
elif st.session_state.content_type["type"] == "News Item":
instructions = """
The Current Events Framework Generator creates a structured analysis with these components:
1. **Main event/development** described in the news item
2. **Historical and political context** surrounding the event
3. **Key stakeholders and perspectives** involved
4. **Media coverage analysis** examining reporting approaches
5. **Immediate impacts** on various sectors
6. **Long-term implications** for policy and society
7. **Related developments** connected to this news
8. **Critical thinking questions** for deeper analysis
"""
else:
instructions = """
The Discussion Framework Generator creates a structured analysis with these components:
1. **Main topic/theme** of the document
2. **Key concepts** central to understanding the content
3. **Important relationships** between ideas and elements
4. **Supporting evidence** presented in the document
5. **Counterarguments/limitations** worth considering
6. **Practical applications** of the content
7. **Discussion questions** for deeper exploration
8. **Further exploration topics** related to the content
"""
st.write(instructions)
st.write("""
The generator provides a structured framework perfect for teaching, presentations,
or educational discussions.
""")
else:
# Display the previously generated content
st.success(f"{tab_names[2]} generated successfully!")
# Display the analysis results
st.subheader(tab_names[2])
for section in st.session_state.board_plan_result['sections']:
with st.expander(section['title'], expanded=True):
for point in section['points']:
st.markdown(f"β’ {point}")
if 'questions' in st.session_state.board_plan_result:
st.subheader("Questions for Further Exploration")
for point in st.session_state.board_plan_result['questions']['points']:
st.markdown(f"β’ {point}")
# Generate appropriate filename based on content type
if st.session_state.content_type["type"] == "Case Study":
filename = "board_plan.md"
elif st.session_state.content_type["type"] == "Scientific Article":
filename = "discussion_points.md"
elif st.session_state.content_type["type"] == "News Item":
filename = "current_events_framework.md"
else:
filename = "discussion_framework.md"
# Provide download option
st.download_button(
label=f"π₯ Download {tab_names[2]} (Markdown)",
data=st.session_state.board_plan_markdown,
file_name=filename,
mime="text/markdown",
)
else:
# Display welcome message and instructions when no files are uploaded
st.markdown("""
## Welcome to the Document Analysis Suite
This application provides three powerful tools for analyzing different types of documents:
1. **Document Analysis Generator**: Creates a comprehensive analysis with sections tailored to the document type (case study, scientific article, news item, or other content).
2. **Teaching Plan Generator**: Develops a 2-hour lesson plan with activities, discussions, and assessments based on the document.
3. **Discussion Framework Generator**: Produces a structured analysis with key insights based on the type of document uploaded.
### Getting Started
1. Enter your API key in the sidebar
2. Upload one or more document files in PDF, DOCX, PPT, or PPTX format
3. The system will automatically detect the document type (case study, scientific article, news item, or other)
4. You can confirm or change the detected document type
5. Select the generator tab you want to use
6. Click the generate button and wait for the results
Each generator produces downloadable content tailored to your document type.
""")
# Footer
st.divider()
st.caption("Created with CrewAI, Streamlit, and Gemini β’ Built by Arun Kashyap β’ Β© 2025") |