kashyaparun commited on
Commit
f6e2ee7
·
verified ·
1 Parent(s): 4341d67

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -22
app.py CHANGED
@@ -29,8 +29,7 @@ from pydantic import BaseModel, Field
29
  import litellm
30
  from langchain.tools import Tool
31
 
32
- LLM._get_litellm_model_name = lambda self, model_name: f"gemini/{model_name}" if not "/" in model_name else model_name
33
- os.environ["LITELLM_MODEL_DEFAULT_PROVIDER"] = "gemini"
34
 
35
  # Configure logging
36
  logging.basicConfig(level=logging.INFO)
@@ -62,7 +61,7 @@ if 'board_plan_generated' not in st.session_state:
62
  # Load environment variables
63
  #load_dotenv()
64
 
65
- os.environ["LITELLM_MODEL_DEFAULT_PROVIDER"] = "gemini"
66
 
67
 
68
  # Page title and description
@@ -73,6 +72,7 @@ st.write("Developed for BIA 568 (Business Intelligence and Analytics) -- Managem
73
  st.write("---")
74
 
75
  # Sidebar for API key configuration
 
76
  with st.sidebar:
77
  st.title("⚙️ Configuration")
78
 
@@ -81,7 +81,17 @@ with st.sidebar:
81
  if api_key:
82
  os.environ["GEMINI_API_KEY"] = api_key
83
  os.environ["GOOGLE_API_KEY"] = api_key
84
- #os.environ["OPENAI_API_KEY"] = api_key
 
 
 
 
 
 
 
 
 
 
85
 
86
  st.divider()
87
 
@@ -393,10 +403,13 @@ class SectionContent(BaseModel):
393
  class CaseBreakdownCrew:
394
  def __init__(self, api_key):
395
  self.api_key = api_key
396
-
 
 
 
 
 
397
  def create_metadata_agent(self):
398
- self.api_key = api_key
399
- self.llm = LLM(model='gemini/gemini-2.0-flash', api_key=self.api_key) # Create a Gemini LLM instance
400
  return Agent(
401
  role="Metadata Analyzer",
402
  goal="Extract title and author information from document content",
@@ -404,11 +417,16 @@ class CaseBreakdownCrew:
404
  such as titles, authors, and other publication information. You have a keen eye for
405
  identifying the most important and relevant document metadata, even when it's not
406
  explicitly labeled.""",
 
 
 
 
 
407
  verbose=True
408
  )
409
 
410
  def create_content_generator_agent(self):
411
- llm = LLM(model='gemini/gemini-2.0-flash', api_key=self.api_key)
412
  return Agent(
413
  role="Case Study Content Generator",
414
  goal="Generate comprehensive case analysis content based on section requirements",
@@ -416,11 +434,12 @@ class CaseBreakdownCrew:
416
  You excel at breaking down complex business cases into structured, insightful content
417
  that highlights key learning points, strategies, and insights. You have extensive experience
418
  in business education and know how to create content that is valuable for teaching and learning.""",
 
419
  verbose=True
420
  )
421
 
422
  def create_content_reviewer_agent(self):
423
- llm = LLM(model='gemini/gemini-2.0-flash', api_key=self.api_key)
424
  return Agent(
425
  role="Content Quality Reviewer",
426
  goal="Evaluate and score content for quality, relevance, and depth",
@@ -428,6 +447,7 @@ class CaseBreakdownCrew:
428
  business case studies and educational content. You have a strong understanding of what makes
429
  effective case study material and can provide constructive feedback to improve content quality.
430
  You carefully analyze content for relevance, clarity, depth, and educational value.""",
 
431
  verbose=True
432
  )
433
 
@@ -506,7 +526,6 @@ class CaseBreakdownCrew:
506
  agents=[self.create_metadata_agent()],
507
  tasks=[metadata_task],
508
  process=Process.sequential,
509
- llm=LLM(model='gemini/gemini-2.0-flash', api_key=self.api_key),
510
  verbose=False
511
  )
512
  result = crew.kickoff()
@@ -603,17 +622,15 @@ def extract_text(file_path: str) -> str:
603
  except Exception as e:
604
  return f"Error extracting text: {str(e)}"
605
 
606
- def create_teaching_plan_crew(file_paths, llm_provider="gemini"):
607
- # Initialize the agent tracker
608
- tracker = AgentTracker()
609
- tracker.set_placeholder(st.empty())
610
-
611
- # Initialize LLM based on provider
612
- my_llm = LLM(model='gemini/gemini-2.0-flash',
613
- api_key=os.environ.get("GEMINI_API_KEY")
614
  )
615
 
616
- # Define agents with callbacks for UI updates
617
  pdf_analyzer = Agent(
618
  role='Case Study Analyzer',
619
  goal='Extract key concepts, objectives, and data from case study files',
@@ -707,9 +724,13 @@ class BoardPlanAnalyzer:
707
  api_key = os.environ.get('GEMINI_API_KEY')
708
  if not api_key:
709
  raise ValueError("Gemini API key not found")
710
- # Create an LLM instance configured for Gemini
711
- self.llm = LLM(model='gemini/gemini-2.0-flash', api_key=api_key)
712
 
 
 
 
 
 
 
713
  litellm.set_verbose = True
714
 
715
  # Create agents
@@ -811,11 +832,13 @@ class BoardPlanAnalyzer:
811
 
812
  try:
813
  response = litellm.completion(
814
- model=self.llm,
815
  messages=messages,
816
  api_key=os.environ.get("GEMINI_API_KEY"),
 
817
  response_format={"type": "json_object"}
818
  )
 
819
 
820
  # Extract and parse the JSON response
821
  content = response.choices[0].message.content
 
29
  import litellm
30
  from langchain.tools import Tool
31
 
32
+
 
33
 
34
  # Configure logging
35
  logging.basicConfig(level=logging.INFO)
 
61
  # Load environment variables
62
  #load_dotenv()
63
 
64
+
65
 
66
 
67
  # Page title and description
 
72
  st.write("---")
73
 
74
  # Sidebar for API key configuration
75
+ # In the sidebar section:
76
  with st.sidebar:
77
  st.title("⚙️ Configuration")
78
 
 
81
  if api_key:
82
  os.environ["GEMINI_API_KEY"] = api_key
83
  os.environ["GOOGLE_API_KEY"] = api_key
84
+ os.environ["LITELLM_MODEL_DEFAULT_PROVIDER"] = "gemini"
85
+
86
+ # Configure litellm
87
+ litellm.set_verbose = True
88
+ litellm_config = {
89
+ "model": "gemini/gemini-2.0-flash",
90
+ "api_key": api_key,
91
+ "provider": "gemini"
92
+ }
93
+
94
+
95
 
96
  st.divider()
97
 
 
403
  class CaseBreakdownCrew:
404
  def __init__(self, api_key):
405
  self.api_key = api_key
406
+ self.llm = LLM(
407
+ model='gemini/gemini-2.0-flash',
408
+ api_key=self.api_key,
409
+ provider="gemini"
410
+ )
411
+
412
  def create_metadata_agent(self):
 
 
413
  return Agent(
414
  role="Metadata Analyzer",
415
  goal="Extract title and author information from document content",
 
417
  such as titles, authors, and other publication information. You have a keen eye for
418
  identifying the most important and relevant document metadata, even when it's not
419
  explicitly labeled.""",
420
+ llm=LLM(
421
+ model='gemini/gemini-2.0-flash',
422
+ api_key=self.api_key,
423
+ provider="gemini"
424
+ ),
425
  verbose=True
426
  )
427
 
428
  def create_content_generator_agent(self):
429
+
430
  return Agent(
431
  role="Case Study Content Generator",
432
  goal="Generate comprehensive case analysis content based on section requirements",
 
434
  You excel at breaking down complex business cases into structured, insightful content
435
  that highlights key learning points, strategies, and insights. You have extensive experience
436
  in business education and know how to create content that is valuable for teaching and learning.""",
437
+ llm=self.llm,
438
  verbose=True
439
  )
440
 
441
  def create_content_reviewer_agent(self):
442
+
443
  return Agent(
444
  role="Content Quality Reviewer",
445
  goal="Evaluate and score content for quality, relevance, and depth",
 
447
  business case studies and educational content. You have a strong understanding of what makes
448
  effective case study material and can provide constructive feedback to improve content quality.
449
  You carefully analyze content for relevance, clarity, depth, and educational value.""",
450
+ llm=self.llm,
451
  verbose=True
452
  )
453
 
 
526
  agents=[self.create_metadata_agent()],
527
  tasks=[metadata_task],
528
  process=Process.sequential,
 
529
  verbose=False
530
  )
531
  result = crew.kickoff()
 
622
  except Exception as e:
623
  return f"Error extracting text: {str(e)}"
624
 
625
+ def create_teaching_plan_crew(file_paths):
626
+ # Initialize LLM
627
+ my_llm = LLM(
628
+ model='gemini/gemini-2.0-flash',
629
+ api_key=os.environ.get("GEMINI_API_KEY"),
630
+ provider="gemini"
 
 
631
  )
632
 
633
+ # Create agents with Gemini configuration
634
  pdf_analyzer = Agent(
635
  role='Case Study Analyzer',
636
  goal='Extract key concepts, objectives, and data from case study files',
 
724
  api_key = os.environ.get('GEMINI_API_KEY')
725
  if not api_key:
726
  raise ValueError("Gemini API key not found")
 
 
727
 
728
+ self.llm = LLM(
729
+ model='gemini/gemini-2.0-flash',
730
+ api_key=api_key,
731
+ provider="gemini"
732
+ )
733
+
734
  litellm.set_verbose = True
735
 
736
  # Create agents
 
832
 
833
  try:
834
  response = litellm.completion(
835
+ model="gemini/gemini-2.0-flash",
836
  messages=messages,
837
  api_key=os.environ.get("GEMINI_API_KEY"),
838
+ provider="gemini",
839
  response_format={"type": "json_object"}
840
  )
841
+
842
 
843
  # Extract and parse the JSON response
844
  content = response.choices[0].message.content