Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import ( | |
T5ForConditionalGeneration, | |
T5Tokenizer, | |
pipeline, | |
AutoTokenizer, | |
AutoModelForCausalLM | |
) | |
import torch | |
# ----- Streamlit page config ----- | |
st.set_page_config(page_title="Chat", layout="wide") | |
# ----- Sidebar: Model controls ----- | |
st.sidebar.title("Model Controls") | |
model_options = { | |
"1": "karthikeyan-r/calculation_model_11k", | |
"2": "karthikeyan-r/slm-custom-model_6k" | |
} | |
model_choice = st.sidebar.selectbox( | |
"Select Model", | |
options=list(model_options.values()) | |
) | |
load_model_button = st.sidebar.button("Load Model") | |
clear_conversation_button = st.sidebar.button("Clear Conversation") | |
clear_model_button = st.sidebar.button("Clear Model") | |
# ----- Session States ----- | |
if "model" not in st.session_state: | |
st.session_state["model"] = None | |
if "tokenizer" not in st.session_state: | |
st.session_state["tokenizer"] = None | |
if "qa_pipeline" not in st.session_state: | |
st.session_state["qa_pipeline"] = None | |
if "conversation" not in st.session_state: | |
st.session_state["conversation"] = [] | |
# ----- Load Model ----- | |
def load_model(): | |
if st.session_state["model"] is None or st.session_state["tokenizer"] is None: | |
with st.spinner("Loading model..."): | |
try: | |
if model_choice == model_options["1"]: | |
# Load the calculation model | |
tokenizer = AutoTokenizer.from_pretrained(model_choice, cache_dir="./model_cache") | |
model = AutoModelForCausalLM.from_pretrained(model_choice, cache_dir="./model_cache") | |
# Add special tokens if needed | |
if tokenizer.pad_token is None: | |
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
model.resize_token_embeddings(len(tokenizer)) | |
if tokenizer.eos_token is None: | |
tokenizer.add_special_tokens({'eos_token': '[EOS]'}) | |
model.resize_token_embeddings(len(tokenizer)) | |
model.config.pad_token_id = tokenizer.pad_token_id | |
model.config.eos_token_id = tokenizer.eos_token_id | |
st.session_state["model"] = model | |
st.session_state["tokenizer"] = tokenizer | |
st.session_state["qa_pipeline"] = None # Not needed for calculation model | |
elif model_choice == model_options["2"]: | |
# Load the T5 model for general QA | |
device = 0 if torch.cuda.is_available() else -1 | |
model = T5ForConditionalGeneration.from_pretrained(model_choice, cache_dir="./model_cache") | |
tokenizer = T5Tokenizer.from_pretrained(model_choice, cache_dir="./model_cache") | |
qa_pipe = pipeline( | |
"text2text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
device=device | |
) | |
st.session_state["model"] = model | |
st.session_state["tokenizer"] = tokenizer | |
st.session_state["qa_pipeline"] = qa_pipe | |
st.success("Model loaded successfully and ready!") | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
if load_model_button: | |
load_model() | |
# ----- Clear Model ----- | |
if clear_model_button: | |
st.session_state["model"] = None | |
st.session_state["tokenizer"] = None | |
st.session_state["qa_pipeline"] = None | |
st.success("Model cleared.") | |
# ----- Clear Conversation ----- | |
if clear_conversation_button: | |
st.session_state["conversation"] = [] | |
st.success("Conversation cleared.") | |
# ----- Title ----- | |
st.title("Chat Conversation UI") | |
# ----- User Input and Processing ----- | |
user_input = st.chat_input("Enter your query:") | |
if user_input: | |
# Save user input | |
st.session_state["conversation"].append({ | |
"role": "user", | |
"content": user_input | |
}) | |
# Generate response | |
if st.session_state["qa_pipeline"]: | |
try: | |
response = st.session_state["qa_pipeline"](f"Q: {user_input}", max_length=250) | |
answer = response[0]["generated_text"] | |
except Exception as e: | |
answer = f"Error: {str(e)}" | |
elif st.session_state["model"] and model_choice == model_options["1"]: | |
try: | |
tokenizer = st.session_state["tokenizer"] | |
model = st.session_state["model"] | |
inputs = tokenizer(f"Input: {user_input}\nOutput:", return_tensors="pt", padding=True, truncation=True) | |
output = model.generate(inputs.input_ids, max_length=250, pad_token_id=tokenizer.pad_token_id) | |
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("Output:")[-1].strip() | |
except Exception as e: | |
answer = f"Error: {str(e)}" | |
else: | |
answer = "No model is loaded. Please select and load a model." | |
# Save assistant response | |
st.session_state["conversation"].append({ | |
"role": "assistant", | |
"content": answer | |
}) | |
# Display conversation | |
for message in st.session_state["conversation"]: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |