Spaces:
Sleeping
Sleeping
File size: 5,272 Bytes
62098f3 d7d1a81 62098f3 d7d1a81 f0b46d5 62098f3 d7d1a81 62098f3 c2d1e89 5f762bd c2d1e89 d7d1a81 62098f3 d7d1a81 62098f3 d7d1a81 be79c33 62098f3 be79c33 62098f3 d7d1a81 62098f3 d7d1a81 f0b46d5 402b346 eeaf9ed d7d1a81 be79c33 eeaf9ed be79c33 eeaf9ed be79c33 eeaf9ed be79c33 eeaf9ed be79c33 eeaf9ed be79c33 402b346 be79c33 402b346 be79c33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
from transformers import (
T5ForConditionalGeneration,
T5Tokenizer,
pipeline,
AutoTokenizer,
AutoModelForCausalLM
)
import torch
# ----- Streamlit page config -----
st.set_page_config(page_title="Chat", layout="wide")
# ----- Sidebar: Model controls -----
st.sidebar.title("Model Controls")
model_options = {
"1": "karthikeyan-r/calculation_model_11k",
"2": "karthikeyan-r/slm-custom-model_6k"
}
model_choice = st.sidebar.selectbox(
"Select Model",
options=list(model_options.values())
)
load_model_button = st.sidebar.button("Load Model")
clear_conversation_button = st.sidebar.button("Clear Conversation")
clear_model_button = st.sidebar.button("Clear Model")
# ----- Session States -----
if "model" not in st.session_state:
st.session_state["model"] = None
if "tokenizer" not in st.session_state:
st.session_state["tokenizer"] = None
if "qa_pipeline" not in st.session_state:
st.session_state["qa_pipeline"] = None
if "conversation" not in st.session_state:
st.session_state["conversation"] = []
# ----- Load Model -----
def load_model():
if st.session_state["model"] is None or st.session_state["tokenizer"] is None:
with st.spinner("Loading model..."):
try:
if model_choice == model_options["1"]:
# Load the calculation model
tokenizer = AutoTokenizer.from_pretrained(model_choice, cache_dir="./model_cache")
model = AutoModelForCausalLM.from_pretrained(model_choice, cache_dir="./model_cache")
# Add special tokens if needed
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
model.resize_token_embeddings(len(tokenizer))
if tokenizer.eos_token is None:
tokenizer.add_special_tokens({'eos_token': '[EOS]'})
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
model.config.eos_token_id = tokenizer.eos_token_id
st.session_state["model"] = model
st.session_state["tokenizer"] = tokenizer
st.session_state["qa_pipeline"] = None # Not needed for calculation model
elif model_choice == model_options["2"]:
# Load the T5 model for general QA
device = 0 if torch.cuda.is_available() else -1
model = T5ForConditionalGeneration.from_pretrained(model_choice, cache_dir="./model_cache")
tokenizer = T5Tokenizer.from_pretrained(model_choice, cache_dir="./model_cache")
qa_pipe = pipeline(
"text2text-generation",
model=model,
tokenizer=tokenizer,
device=device
)
st.session_state["model"] = model
st.session_state["tokenizer"] = tokenizer
st.session_state["qa_pipeline"] = qa_pipe
st.success("Model loaded successfully and ready!")
except Exception as e:
st.error(f"Error loading model: {e}")
if load_model_button:
load_model()
# ----- Clear Model -----
if clear_model_button:
st.session_state["model"] = None
st.session_state["tokenizer"] = None
st.session_state["qa_pipeline"] = None
st.success("Model cleared.")
# ----- Clear Conversation -----
if clear_conversation_button:
st.session_state["conversation"] = []
st.success("Conversation cleared.")
# ----- Title -----
st.title("Chat Conversation UI")
# ----- User Input and Processing -----
user_input = st.chat_input("Enter your query:")
if user_input:
# Save user input
st.session_state["conversation"].append({
"role": "user",
"content": user_input
})
# Generate response
if st.session_state["qa_pipeline"]:
try:
response = st.session_state["qa_pipeline"](f"Q: {user_input}", max_length=250)
answer = response[0]["generated_text"]
except Exception as e:
answer = f"Error: {str(e)}"
elif st.session_state["model"] and model_choice == model_options["1"]:
try:
tokenizer = st.session_state["tokenizer"]
model = st.session_state["model"]
inputs = tokenizer(f"Input: {user_input}\nOutput:", return_tensors="pt", padding=True, truncation=True)
output = model.generate(inputs.input_ids, max_length=250, pad_token_id=tokenizer.pad_token_id)
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("Output:")[-1].strip()
except Exception as e:
answer = f"Error: {str(e)}"
else:
answer = "No model is loaded. Please select and load a model."
# Save assistant response
st.session_state["conversation"].append({
"role": "assistant",
"content": answer
})
# Display conversation
for message in st.session_state["conversation"]:
with st.chat_message(message["role"]):
st.write(message["content"])
|