Spaces:
Sleeping
Sleeping
Commit
·
6c68bc1
1
Parent(s):
dae968e
Delete app_v1.py
Browse files
app_v1.py
DELETED
@@ -1,114 +0,0 @@
|
|
1 |
-
# """
|
2 |
-
# Author: Amir Hossein Kargaran
|
3 |
-
# Date: August, 2023
|
4 |
-
|
5 |
-
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
|
6 |
-
|
7 |
-
# MIT License
|
8 |
-
|
9 |
-
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980
|
10 |
-
# """
|
11 |
-
|
12 |
-
import gradio as gr
|
13 |
-
from io import BytesIO
|
14 |
-
from fasttext.FastText import _FastText
|
15 |
-
import re
|
16 |
-
import lime.lime_text
|
17 |
-
import numpy as np
|
18 |
-
from PIL import Image
|
19 |
-
from huggingface_hub import hf_hub_download
|
20 |
-
from selenium import webdriver
|
21 |
-
from selenium.common.exceptions import WebDriverException
|
22 |
-
import os
|
23 |
-
|
24 |
-
# Load the FastText language identification model from Hugging Face Hub
|
25 |
-
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
26 |
-
|
27 |
-
# Create the FastText classifier
|
28 |
-
classifier = _FastText(model_path)
|
29 |
-
|
30 |
-
def remove_label_prefix(item):
|
31 |
-
return item.replace('__label__', '')
|
32 |
-
|
33 |
-
def remove_label_prefix_list(input_list):
|
34 |
-
if isinstance(input_list[0], list):
|
35 |
-
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
36 |
-
else:
|
37 |
-
return [remove_label_prefix(item) for item in input_list]
|
38 |
-
|
39 |
-
class_names = remove_label_prefix_list(classifier.labels)
|
40 |
-
class_names = np.sort(class_names)
|
41 |
-
num_class = len(class_names)
|
42 |
-
|
43 |
-
def tokenize_string(string):
|
44 |
-
return string.split()
|
45 |
-
|
46 |
-
explainer = lime.lime_text.LimeTextExplainer(
|
47 |
-
split_expression=tokenize_string,
|
48 |
-
bow=False,
|
49 |
-
class_names=class_names
|
50 |
-
)
|
51 |
-
|
52 |
-
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
53 |
-
res = []
|
54 |
-
labels, probabilities = classifier.predict(texts, num_class)
|
55 |
-
labels = remove_label_prefix_list(labels)
|
56 |
-
for label, probs, text in zip(labels, probabilities, texts):
|
57 |
-
order = np.argsort(np.array(label))
|
58 |
-
res.append(probs[order])
|
59 |
-
return np.array(res)
|
60 |
-
|
61 |
-
def generate_explanation_html(input_sentence):
|
62 |
-
preprocessed_sentence = input_sentence
|
63 |
-
exp = explainer.explain_instance(
|
64 |
-
preprocessed_sentence,
|
65 |
-
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
66 |
-
top_labels=2,
|
67 |
-
num_features=20,
|
68 |
-
)
|
69 |
-
output_html_filename = "explanation.html"
|
70 |
-
exp.save_to_file(output_html_filename)
|
71 |
-
return output_html_filename
|
72 |
-
|
73 |
-
def take_screenshot(local_html_path):
|
74 |
-
options = webdriver.ChromeOptions()
|
75 |
-
options.add_argument('--headless')
|
76 |
-
options.add_argument('--no-sandbox')
|
77 |
-
options.add_argument('--disable-dev-shm-usage')
|
78 |
-
|
79 |
-
try:
|
80 |
-
local_html_path = os.path.abspath(local_html_path)
|
81 |
-
wd = webdriver.Chrome(options=options)
|
82 |
-
wd.set_window_size(1366, 728)
|
83 |
-
wd.get('file://' + local_html_path)
|
84 |
-
wd.implicitly_wait(10)
|
85 |
-
screenshot = wd.get_screenshot_as_png()
|
86 |
-
except WebDriverException as e:
|
87 |
-
return Image.new('RGB', (1, 1))
|
88 |
-
finally:
|
89 |
-
if wd:
|
90 |
-
wd.quit()
|
91 |
-
|
92 |
-
return Image.open(BytesIO(screenshot))
|
93 |
-
|
94 |
-
def merge(input_sentence):
|
95 |
-
input_sentence = input_sentence.replace('\n', ' ')
|
96 |
-
output_html_filename = generate_explanation_html(input_sentence)
|
97 |
-
im = take_screenshot(output_html_filename)
|
98 |
-
|
99 |
-
return im, output_html_filename
|
100 |
-
|
101 |
-
input_sentence = gr.inputs.Textbox(label="Input Sentence")
|
102 |
-
|
103 |
-
output_explanation = gr.outputs.File(label="Explanation HTML")
|
104 |
-
|
105 |
-
iface = gr.Interface(
|
106 |
-
fn=merge,
|
107 |
-
inputs=input_sentence,
|
108 |
-
outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation],
|
109 |
-
title="LIME LID",
|
110 |
-
description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.",
|
111 |
-
allow_flagging='never'
|
112 |
-
)
|
113 |
-
|
114 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|