Spaces:
Sleeping
Sleeping
Commit
·
dae968e
1
Parent(s):
5253665
Delete app_v0.py
Browse files
app_v0.py
DELETED
|
@@ -1,113 +0,0 @@
|
|
| 1 |
-
# """
|
| 2 |
-
# Author: Amir Hossein Kargaran
|
| 3 |
-
# Date: August, 2023
|
| 4 |
-
|
| 5 |
-
# Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.
|
| 6 |
-
|
| 7 |
-
# MIT License
|
| 8 |
-
|
| 9 |
-
# Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980
|
| 10 |
-
# """
|
| 11 |
-
|
| 12 |
-
import gradio as gr
|
| 13 |
-
from io import BytesIO
|
| 14 |
-
import base64
|
| 15 |
-
from fasttext.FastText import _FastText
|
| 16 |
-
import re
|
| 17 |
-
import lime.lime_text
|
| 18 |
-
import numpy as np
|
| 19 |
-
from pathlib import Path
|
| 20 |
-
from huggingface_hub import hf_hub_download
|
| 21 |
-
|
| 22 |
-
# Load the FastText language identification model from Hugging Face Hub
|
| 23 |
-
model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
|
| 24 |
-
|
| 25 |
-
# Create the FastText classifier
|
| 26 |
-
classifier = _FastText(model_path)
|
| 27 |
-
|
| 28 |
-
def remove_label_prefix(item):
|
| 29 |
-
"""
|
| 30 |
-
Remove label prefix from an item
|
| 31 |
-
"""
|
| 32 |
-
return item.replace('__label__', '')
|
| 33 |
-
|
| 34 |
-
def remove_label_prefix_list(input_list):
|
| 35 |
-
"""
|
| 36 |
-
Remove label prefix from list or list of list
|
| 37 |
-
"""
|
| 38 |
-
if isinstance(input_list[0], list):
|
| 39 |
-
# If the first element is a list, it's a list of lists
|
| 40 |
-
return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list]
|
| 41 |
-
else:
|
| 42 |
-
# Otherwise, it's a simple list
|
| 43 |
-
return [remove_label_prefix(item) for item in input_list]
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# Get the sorted class names from the classifier
|
| 47 |
-
class_names = remove_label_prefix_list(classifier.labels)
|
| 48 |
-
class_names = np.sort(class_names)
|
| 49 |
-
num_class = len(class_names)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def tokenize_string(string):
|
| 53 |
-
"""
|
| 54 |
-
Splits the string into words similar to FastText's method.
|
| 55 |
-
"""
|
| 56 |
-
return string.split()
|
| 57 |
-
|
| 58 |
-
explainer = lime.lime_text.LimeTextExplainer(
|
| 59 |
-
split_expression=tokenize_string,
|
| 60 |
-
bow=False,
|
| 61 |
-
class_names=class_names
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
def fasttext_prediction_in_sklearn_format(classifier, texts):
|
| 65 |
-
"""
|
| 66 |
-
Converts FastText predictions into Scikit-Learn format predictions.
|
| 67 |
-
"""
|
| 68 |
-
res = []
|
| 69 |
-
labels, probabilities = classifier.predict(texts, num_class)
|
| 70 |
-
|
| 71 |
-
# Remove label prefix
|
| 72 |
-
labels = remove_label_prefix_list(labels)
|
| 73 |
-
|
| 74 |
-
for label, probs, text in zip(labels, probabilities, texts):
|
| 75 |
-
order = np.argsort(np.array(label))
|
| 76 |
-
res.append(probs[order])
|
| 77 |
-
|
| 78 |
-
return np.array(res)
|
| 79 |
-
|
| 80 |
-
def generate_explanation_html(input_sentence):
|
| 81 |
-
"""
|
| 82 |
-
Generates an explanation HTML file using LIME for the input sentence.
|
| 83 |
-
"""
|
| 84 |
-
preprocessed_sentence = input_sentence # No need to preprocess anymore
|
| 85 |
-
exp = explainer.explain_instance(
|
| 86 |
-
preprocessed_sentence,
|
| 87 |
-
classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x),
|
| 88 |
-
top_labels=2,
|
| 89 |
-
num_features=20,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
output_html_filename = "explanation.html"
|
| 93 |
-
exp.save_to_file(output_html_filename)
|
| 94 |
-
|
| 95 |
-
return output_html_filename
|
| 96 |
-
|
| 97 |
-
def download_html_file(html_filename):
|
| 98 |
-
"""
|
| 99 |
-
Downloads the content of the given HTML file.
|
| 100 |
-
"""
|
| 101 |
-
with open(html_filename, "rb") as file:
|
| 102 |
-
html_content = file.read()
|
| 103 |
-
return html_content
|
| 104 |
-
|
| 105 |
-
input_sentence = gr.inputs.Textbox(label="Input Sentence") # Change the label if needed
|
| 106 |
-
output_explanation = gr.outputs.File(label="Download Explanation HTML")
|
| 107 |
-
|
| 108 |
-
gr.Interface(
|
| 109 |
-
fn=generate_explanation_html,
|
| 110 |
-
inputs=input_sentence,
|
| 111 |
-
outputs=output_explanation,
|
| 112 |
-
allow_flagging='never'
|
| 113 |
-
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|